
 NUC980 

May 2, 2019  Page 1 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

ARM926EJ-S Based 

32-bit Microprocessor 

 

 

 

 

 

 

NUC980 Programming Guide 
 

 

 

  

 

 

 

 

 

 

 

 

The information described in this document is the exclusive intellectual property of 
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. 

 

Nuvoton is providing this document only for reference purposes of NUC980 microprocessor based 
system design. Nuvoton assumes no responsibility for errors or omissions. 

All data and specifications are subject to change without notice. 

 

For additional information or questions, please contact: Nuvoton Technology Corporation. 

www.nuvoton.com 

  

http://www.nuvoton.com/


 NUC980 

May 2, 2019  Page 2 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

1 OVERVIEW .................................................................................................. 13 

2 SYSTEM MANAGER ................................................................................... 14 

2.1 Overview ....................................................................................................................... 14 

2.2 Functional Description ................................................................................................ 14 

 Register Write-Protection Control.............................................................................. 14 

 Multiple Function Control ............................................................................................ 14 

 System Reset ............................................................................................................... 14 

 Low Voltage Detect / Reset ........................................................................................ 14 

 IP Reset......................................................................................................................... 15 

 Power Mode And Wake Up Source .......................................................................... 15 

 USB ID Detection ......................................................................................................... 16 

2.3 Register Map ................................................................................................................ 17 

3 CLOCK CONTROLLER ............................................................................... 19 

3.1 Overview ....................................................................................................................... 19 

3.2 Features ........................................................................................................................ 19 

3.3 Block Diagram .............................................................................................................. 20 

3.4 Functional Description ................................................................................................ 21 

 Pre-Scalar Counter ...................................................................................................... 21 

 Module Clock On/Off ................................................................................................... 21 

 Clock Divider ................................................................................................................ 21 

 PLL Setting ................................................................................................................... 21 

3.5 Register Map ................................................................................................................ 23 

4 ADVANCED INTERRUPT CONTROLLER (AIC) ........................................ 24 

4.1 Overview ....................................................................................................................... 24 

4.2 Features ........................................................................................................................ 24 

4.3 Block Diagram .............................................................................................................. 25 

4.4 Functional Description ................................................................................................ 26 

 Interrupt channel configuration .................................................................................. 26 

 Interrupt Masking ......................................................................................................... 26 



 NUC980 

May 2, 2019  Page 3 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Interrupt Handling Operation Flow ............................................................................ 26 

 ENIT Usage .................................................................................................................. 27 

 Interrupt Source ........................................................................................................... 29 

4.5 Register Map ................................................................................................................ 32 

5 EXTERNAL BUS INTERFACE (EBI) ........................................................... 34 

5.1 Overview ....................................................................................................................... 34 

5.2 Features ........................................................................................................................ 34 

5.3 Block Diagram .............................................................................................................. 34 

5.4 Functional Description ................................................................................................ 35 

 Basic Configuration ..................................................................................................... 35 

 Operation and Access Time Control ......................................................................... 36 

5.5 Register Map ................................................................................................................ 38 

6 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) ......................................... 39 

6.1 Overview ....................................................................................................................... 39 

6.2 Features ........................................................................................................................ 39 

6.3 Block Diagram .............................................................................................................. 40 

6.4 Functional Description ................................................................................................ 41 

 Multiple function pin Configuration ............................................................................ 41 

6.5 Register Map ................................................................................................................ 44 

7 PERIPHERAL DMA CONTROLLER (PDMA) ............................................. 47 

7.1 Overview ....................................................................................................................... 47 

7.2 Features ........................................................................................................................ 47 

7.3 Block Diagram .............................................................................................................. 47 

7.4 Functional Description ................................................................................................ 48 

 Descriptor Functional Descriptions ........................................................................... 48 

7.5 Register Map ................................................................................................................ 55 

8 TIMER CONTROLLER (EMR) ..................................................................... 57 

8.1 Overview ....................................................................................................................... 57 



 NUC980 

May 2, 2019  Page 4 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

8.2 Features ........................................................................................................................ 57 

8.3 Block Diagram .............................................................................................................. 58 

8.4 Functional Description ................................................................................................ 59 

 Timer Initialization ........................................................................................................ 59 

 Timer Capture Initialization ......................................................................................... 59 

 INTERRUPT HANDLING ........................................................................................... 59 

 TIEMR FREQUENCY ................................................................................................. 59 

 ONE-SHOT MODE ...................................................................................................... 60 

 PERIODIC MODE ....................................................................................................... 60 

 TOGGLE MODE .......................................................................................................... 61 

 CONTINUOUS MODE ................................................................................................ 61 

 Event Counting Mode.................................................................................................. 62 

 FREE COUNTING MODE .......................................................................................... 62 

 TRIGGER COUNTING MODE .................................................................................. 63 

 COUNTER RESET MODE ......................................................................................... 63 

 CAPTURE DEBOUNCE ............................................................................................. 64 

 Inter-Timer Trigger Mode ............................................................................................ 64 

8.5 Register Map ................................................................................................................ 66 

9 PULSE WIDTH MODULATION (PWM) ....................................................... 67 

9.1 Overview ....................................................................................................................... 67 

9.2 Features ........................................................................................................................ 67 

9.3 Block Diagram .............................................................................................................. 68 

9.4 Functional Description ................................................................................................ 69 

 PWM Timer Operation ................................................................................................ 69 

 PWM double buffer ...................................................................................................... 69 

 Periodic and One-Shot Operation ............................................................................. 70 

 Dead-Zone Generator ................................................................................................. 70 

 PWM Timer Start Procedure ...................................................................................... 71 

 PWM Timer Stop Procedure ...................................................................................... 71 

9.5 Register Map ................................................................................................................ 72 



 NUC980 

May 2, 2019  Page 5 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

10 WATCHDOG TIMER (WDT) ........................................................................ 73 

10.1 Overview ................................................................................................................. 73 

10.2 Features .................................................................................................................. 73 

10.3 Block Diagram ........................................................................................................ 73 

10.4 Functional Description .......................................................................................... 74 

 WDT Configuration ...................................................................................................... 74 

 WDT Wakeup ............................................................................................................... 75 

10.5 Register Map .......................................................................................................... 76 

11 WINDOW WATCHDOG TIMER (WWDT) .................................................... 77 

11.1 Overview ................................................................................................................. 77 

11.2 Features .................................................................................................................. 77 

11.3 Block Diagram ........................................................................................................ 77 

11.4 Functional Description .......................................................................................... 78 

 Timeout Setting ............................................................................................................ 78 

 WWDT Interrupt ........................................................................................................... 78 

 System Reset ............................................................................................................... 79 

 WWDT Window Setting Limitations .......................................................................... 79 

11.5 Register Map .......................................................................................................... 80 

12 REAL TIME CLOCK (RTC) .......................................................................... 81 

12.1 Overview ................................................................................................................. 81 

12.2 Features .................................................................................................................. 81 

12.3 Block Diagram ........................................................................................................ 82 

12.4 Functional Description .......................................................................................... 83 

 RTC Initiation ................................................................................................................ 83 

 RTC write enable ......................................................................................................... 83 

 12/24 hour Time scale Selection ............................................................................... 83 

 Set Calendar and Time ............................................................................................... 84 

 Set Calendar and Time Alarm (Absolute) ................................................................. 85 

 Set Time Alarm (Relative) ........................................................................................... 86 



 NUC980 

May 2, 2019  Page 6 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Set wake-up function ................................................................................................... 87 

 Set tick interrupt ........................................................................................................... 88 

 Frequency Compensation .......................................................................................... 89 

12.5 Register Map .......................................................................................................... 91 

13 UART ........................................................................................................... 92 

13.1 Overview ................................................................................................................. 92 

13.2 Features .................................................................................................................. 94 

13.3 Block Diagram ........................................................................................................ 95 

13.4 Functional Description .......................................................................................... 97 

 Initializations ................................................................................................................. 97 

 IrDA Mode ..................................................................................................................... 97 

 RS485 Function Mode ................................................................................................ 98 

 LIN (Local Interconnection Network) Mode ............................................................. 99 

 PDMA Transfer Function .......................................................................................... 100 

 UART Controller Wake-up Function........................................................................ 101 

13.5 Register Map ........................................................................................................ 104 

14 SMART CARD HOST INTERFACE (SC)................................................... 105 

14.1 Overview ............................................................................................................... 105 

14.2 Features ................................................................................................................ 105 

14.3 Block Diagram ...................................................................................................... 106 

14.4 Functional Description ........................................................................................ 107 

 Activation (Cold Reset) ............................................................................................. 107 

 Warm Reset ................................................................................................................ 108 

 Deactivation ................................................................................................................ 109 

 Data Format ................................................................................................................ 110 

 Data Transfer .............................................................................................................. 111 

 Error Signal and Character Repetition.................................................................... 111 

 Internal Time-out Counter ......................................................................................... 112 

 Smartcard Insert/Remove Detection ....................................................................... 114 



 NUC980 

May 2, 2019  Page 7 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Miscellaneous Transmission Settings ..................................................................... 114 

 UART Mode ................................................................................................................ 114 

14.5 Register Map ........................................................................................................ 116 

15 I2C .............................................................................................................. 117 

15.1 Overview ............................................................................................................... 117 

15.2 Features ................................................................................................................ 117 

15.3 Block Diagram ...................................................................................................... 118 

15.4 Functional Description ........................................................................................ 119 

 I2C Protocol ................................................................................................................. 119 

 Operation Modes ....................................................................................................... 119 

 Example for Random Read on EEPROM .............................................................. 125 

15.5 Register Map ........................................................................................................ 127 

16 QSPI ........................................................................................................... 128 

16.1 Overview ............................................................................................................... 128 

16.2 Features ................................................................................................................ 128 

16.3 Block Diagram ...................................................................................................... 129 

16.4 Functional Description ........................................................................................ 130 

 Slave Selection .......................................................................................................... 130 

 Automatic Slave Select ............................................................................................. 130 

 Dual / Quad Mode ..................................................................................................... 130 

 QSPI Interrupt ............................................................................................................ 133 

 Slave mode ................................................................................................................. 133 

 PDMA Transfer function ............................................................................................ 133 

 QSPI Programming Example ................................................................................... 134 

16.5 Register Map ........................................................................................................ 135 

17 SPI ............................................................................................................. 136 

17.1 Overview ............................................................................................................... 136 

17.2 Features ................................................................................................................ 136 

17.3 Block Diagram ...................................................................................................... 137 



 NUC980 

May 2, 2019  Page 8 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

17.4 Functional Description ........................................................................................ 137 

 Slave Selection .......................................................................................................... 137 

 Automatic Slave Select ............................................................................................. 138 

 SPI Interrupt ............................................................................................................... 138 

 Slave mode ................................................................................................................. 138 

 PDMA Transfer function ............................................................................................ 139 

 SPI Programming Example ...................................................................................... 139 

17.5 Register Map ........................................................................................................ 140 

18 I2S CONTROLLER (I2S) ............................................................................. 141 

18.1 Overview ............................................................................................................... 141 

18.2 Features ................................................................................................................ 141 

18.3 Block Diagram ...................................................................................................... 142 

18.4 Functional Description ........................................................................................ 143 

 I2S Master/Slave Mode ............................................................................................. 143 

 I2S Source Clock Configuration ............................................................................... 143 

 I2S Calculation and Configuration of Clock ............................................................ 144 

 DMA ............................................................................................................................. 144 

 Sequence of DMA Data ............................................................................................ 145 

 Interface Selection ..................................................................................................... 146 

 PCM Interface ............................................................................................................ 146 

 Data Split .................................................................................................................... 147 

18.5 Register Map ........................................................................................................ 148 

19 ETHERNET MAC CONTROLLER (EMAC) ............................................... 149 

19.1 Overview ............................................................................................................... 149 

19.2 Features ................................................................................................................ 149 

19.3 Block Diagram ...................................................................................................... 150 

19.4 Functional Description ........................................................................................ 151 

 PHY Control ................................................................................................................ 151 

 CAM Configuration .................................................................................................... 152 



 NUC980 

May 2, 2019  Page 9 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Control Frame ............................................................................................................ 152 

 Wake on Lan (WoL) ................................................................................................... 152 

 Packet Receive .......................................................................................................... 153 

 Packet Transmit ......................................................................................................... 158 

 Network Timing .......................................................................................................... 164 

 Error Handling ............................................................................................................ 167 

19.5 Register Map ........................................................................................................ 169 

20 USB 2.0 DEVICE CONTROLLER (USBD) ................................................ 172 

20.1 Overview ............................................................................................................... 172 

20.2 Features ................................................................................................................ 172 

20.3 Block Diagram ...................................................................................................... 172 

20.4 Functional Description ........................................................................................ 173 

 Initialization ................................................................................................................. 173 

 Interrupt Service Routine .......................................................................................... 174 

 Standard Request ...................................................................................................... 174 

 Set Address Request ................................................................................................ 174 

 Get Descriptor ............................................................................................................ 175 

 IN Transmission ......................................................................................................... 176 

 OUT Transmission ..................................................................................................... 176 

20.5 Register Map ........................................................................................................ 177 

21 USB HOST CONTROLLER ....................................................................... 182 

21.1 Overview ............................................................................................................... 182 

21.2 Features ................................................................................................................ 182 

21.3 Block Diagram ...................................................................................................... 183 

 Basic Configuration ................................................................................................... 183 

 USB Host Port 0 ......................................................................................................... 183 

 EHCI Controller .......................................................................................................... 183 

 OHCI Controller ......................................................................................................... 184 

21.4 Functional Description ........................................................................................ 186 



 NUC980 

May 2, 2019  Page 10 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Initialization ................................................................................................................. 186 

 Root Hub Port Routing Logic ................................................................................... 186 

 OHCI ............................................................................................................................ 186 

 EHCI ............................................................................................................................ 193 

21.5 Register Map ........................................................................................................ 200 

22 CAN ........................................................................................................... 202 

22.1 Overview ............................................................................................................... 202 

22.2 Features ................................................................................................................ 202 

22.3 Block Diagram ...................................................................................................... 202 

22.4 Functional Description ........................................................................................ 204 

 CAN Protocol .............................................................................................................. 204 

 CAN Baud Rate Setting ............................................................................................ 204 

 CAN Module Register ............................................................................................... 206 

 Receive CAN Message ............................................................................................. 209 

 Wakeup Function ....................................................................................................... 210 

22.5 Register Map ........................................................................................................ 210 

23 FLASH MEMORY INTERFACE (FMI) ....................................................... 213 

23.1 Overview ............................................................................................................... 213 

23.2 Features ................................................................................................................ 213 

23.3 Block Diagram ...................................................................................................... 213 

23.4 Functional Description ........................................................................................ 214 

 DMA and FMI Global Control ................................................................................... 214 

 NAND Flash ................................................................................................................ 214 

 SD/eMMC ................................................................................................................... 217 

23.5 Register Map ........................................................................................................ 221 

24 SECURE DIGITAL HOST CONTROLLER (SDH) ..................................... 223 

24.1 Overview ............................................................................................................... 223 

24.2 Features ................................................................................................................ 223 

24.3 Block Diagram ...................................................................................................... 223 



 NUC980 

May 2, 2019  Page 11 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

24.4 Functional Description ........................................................................................ 224 

 Global Control ............................................................................................................ 225 

 Send Command ......................................................................................................... 226 

 Get Response ............................................................................................................ 226 

 Read SD Card ............................................................................................................ 226 

 Write SD Card ............................................................................................................ 226 

24.5 Register Map ........................................................................................................ 228 

25 CRYPTOGRAPHIC ACCELERATOR........................................................ 229 

25.1 Overview ............................................................................................................... 229 

25.2 Features ................................................................................................................ 229 

25.3 Block Diagram ...................................................................................................... 231 

 Data Access ................................................................................................................ 232 

25.4 Functional Description ........................................................................................ 233 

 PRNG .......................................................................................................................... 233 

 AES .............................................................................................................................. 233 

 SHA.............................................................................................................................. 234 

 ECC ............................................................................................................................. 235 

 RSA.............................................................................................................................. 238 

25.5 Register Map ........................................................................................................ 240 

26 CAPTURE SENSOR INTERFACE CONTROLLER ................................... 248 

26.1 Overview ............................................................................................................... 248 

26.2 Features ................................................................................................................ 248 

26.3 Block Diagram ...................................................................................................... 248 

26.4 Functional Description ........................................................................................ 249 

 Basic Configuration ................................................................................................... 249 

 Image Capture Flow Chart ....................................................................................... 249 

 Polarity and Input Data Order .................................................................................. 249 

 Sensor Data Input Order .......................................................................................... 250 

 Input and Output Data Format ................................................................................. 250 



 NUC980 

May 2, 2019  Page 12 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Downscale Factor ...................................................................................................... 250 

 Cropping Window and Start Position ...................................................................... 251 

 One Shutter Mode (Single Frame) .......................................................................... 251 

 Motion detection......................................................................................................... 251 

26.5 Register Map ........................................................................................................ 253 

27 ANALOG TO DIGITAL CONVERTER (ADC) ............................................ 254 

27.1 Overview ............................................................................................................... 254 

27.2 Features ................................................................................................................ 254 

27.3 Functional Description ........................................................................................ 254 

 Basic Configuration ................................................................................................... 254 

 ADC Transfer Function ............................................................................................. 254 

 ADC Timing Diagram ................................................................................................ 255 

 Normal Detection ....................................................................................................... 256 

27.4 Register Map ........................................................................................................ 258 

28 REVISION HISTORY ................................................................................. 259 



 NUC980 

May 2, 2019  Page 13 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

1 OVERVIEW 

The NUC980 series 32-bit microprocessor is powered by the Arm926EJ-S™ processor core with 16 
KB I-cache, 16 KB D-cache and MMU running up to 300 MHz. Its SDRAM interface supports 
SDR/DDR/DDR2/LPDDR type SDRAM running up to 150 MHz. The NUC980 series supports built-in 
16 KB embedded SRAM and 16.5 KB IBR (Internal Boot ROM) for booting from USB, NAND, 
SD/eMMC and SPI Flash, and industrial operating temperature from -40°C to 85°C. In addition, the 
NUC980 series provides built-in DDR in LQFP package to ease PCB design and reduce the BOM 
cost. 

The NUC980 series is equipped with a large number of high speed digital peripherals, such as two 
10/100 Mbps Ethernet MAC supporting RMII, a USB 2.0 high speed host/device and a USB 2.0 high 
speed host controller, up to six USB 2.0 full speed host lite interfaces, two CMOS sensor interfaces 
supporting CCIR601 and CCIR656 type sensor, two SD interfaces supporting SD/SDHC/SDIO card, a 
NAND Flash interface supporting SLC and MLC type NAND Flash, an I2S interface supporting I2S and 
PCM protocol. Also, the NUC980 series offers a built-in hardware cryptography accelerator supporting 
RSA, ECC, AES,  SHA, HMAC and a random number generator (RNG). 

The NUC980 series provides up to ten UART interfaces, two ISO-7816-3 interfaces, a Quad-SPI 
interface, two SPI interfaces, up to four I2C interfaces, four CAN 2.0B interfaces, eight channels PWM 
output, 8-channel 12-bit SAR ADC, six 32-bit timers, WDT (Watchdog Timer), WWDT (Window 
Watchdog Timer), 32.768 kHz XTL and RTC (Real Time Clock). The NUC980 series also supports 
two 10-channel peripheral DMA (PDMA) for automatic data transfer between memories and 
peripherals. 

This document describes the system configuration including clock control and interrupt handling as 
well as the usage of each peripheral from a software engineer’s perspective. 



 NUC980 

May 2, 2019  Page 14 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

2 SYSTEM MANAGER 

2.1 Overview 

The system management describes following information and functions. 

 System Resets 

 System Memory Map 

 System management registers for Product Identifier (PDID), Power-On Setting, System 
Wake-Up, Reset Control for on-chip controllers/peripherals, and multi-function pin control. 

 System Control registers 

2.2 Functional Description 

 Register Write-Protection Control 

Some of the system control registers need to be protect to avoid inadvertent write and disturb the chip 
operation. These system control registers are protect after the power-on reset until user disables 
register protection. For user to program these protected registers, a register protection disable 
sequence needs to be followed by a special programming. The register protection disable sequence is 
writing the data “59h”, “16h” “88h” to the register SYS_REGWPCTL continuously. Any different data 
value, different sequence or any other write to other address during these three data writing will abort 
the whole sequence. 

After the protection is disabled, user can check the protection disable bit at address 0xB000_01FC 
bit0, 1 is protection disable, and 0 is protection enable. Then user can update the target protected 
register value and then write any data to the address “0xB000_01FC” to enable register protection. 

 Multiple Function Control 

Each module should be set the multiple function control before starting it. Such as SPI0, user should 
be set the GPD2 ~ 5 for SPI0. GPD3 is SPI0_SS0, GPD2 is SPI0_CLK, GPD4 is SPI0_DATAO, and 
GPD5 is SPI0_DATAI. Therefore, SYS_GPD_MFPL should be filled with 0x00111100. (For each pin 
setting, refer to NUC980 Technical Reference Manual.) 

 System Reset 

The system reset can be issued by one of the below listed events. System reset should be configured 
CHIPRST(SYS_AHBIPRST[0]), and CPU reset should be configured CPURST(SYS_AHBIPRST[2]). 
For these reset event flags can be read by SYS_RSTSTS register. Write 1 to clear this bit to 0. 

 Power-On Reset, PORRSTS (SYS_RSTSTS[0]) 

 Low level on the /RESET pin, PINRSTS (SYS_RSTSTS[1]) 

 Low Voltage Reset, LVRRSTS (SYS_RSTSTS[2]) (Please refer to the 1.3.4) 

 Chip Reset, CHIPRSTS (SYS_RSTSTS[3]) 

 CPU Reset, CPURSTS (SYS_RSTSTS[4]) 

 Watchdog Time Out Reset, WDTRSTS (SYS_RSTSTS[5]) 

 Low Voltage Detect / Reset 

When voltage is lower than 2.6V or 2.8V, SYS_MISCISR register LVD_IS bit will be set. If the interrupt 
is enabled, the interrupt will occur. When the voltage rises from 2.3V to 2.4V, the system will reset. 



 NUC980 

May 2, 2019  Page 15 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Low voltage reset or detection, please follow the steps below. 

1. Set SYS_LVRDCR register LVD_SEL bit to select the detect voltage – 2.6V or 2.8V. 

2. Detect. Enable SYS_LVRDCR register LVD_EN bit. 

3. Detect and reset. Enable SYS_LVRDCR register LVD_EN and LVR_EN bit. 

4. Active interrupt. Enable SYS_MISCIER register LVD_EN bit. 

5. Confirm interrupt status. Checking SYS_MISCISR register LVD_IS bit. 

6. Clear SYS_MISCISR register LVD_IS bit. 

7. Repeat steps 2〜6. 

 IP Reset 

In the three registers of SYS_AHBIPRST, SYS_APBIPRST0, or SYS_APBIPRST1, the peripheral can 
be reset by writing 1 and writing 0 to the bit corresponding to the peripheral setting. Using TIMER0 as 
an example, the user can write TIMER0RST (SYS_APBIPRST0[8]) 1 then write 0 to reset TIMER0. 

 Power Mode And Wake Up Source 

 Normal mode: All clocks are ON 

 Power-down mode: All clocks are disabled except LXT 

Chip enters to power-down mode, system waits wake-up source occurred and returns to Normal 
Mode. 

Users can get wake-up status from SYS_WKUPSSR0 or SYS_WKUPSSR1. Power-down mode 
wake-up sources include: WDT, GPIO, EINT, Timer, UART, I2C, RTC, CAN, LVD, EMAC, USBH, 
USBD, SDH, and ADC. 

SYS_WKUPSER0 or SYS_WKUPSER1 must be enabled and need to be configured each peripheral 
registers. 

The following steps show how to use TIMER0 to wake up system. 

1. Enable TIMER0 clock and select the clock source as LXT 

2. Enable TIMER0 time-out interrupt and configured time-out is 100 LXT clocks. 

3. Set TMR0WKEN (SYS_WKUPSER0[8]) to 1 

4. Set the WKEN(TIMER0_CTL[2]) to 1, enable TIMER0 wake-up function. 

5. TIMER0 starts counting, CNTEN(TIMER0_CTL[0])=1 

6. Execute WFI to enter power-down mode 

__asm void __wfi(void) 

{ 

MCR p15, 0, r1, c7, c0, 4 

BX lr 

} 

7. Wait for TIMER0 time-out interrupt to wake up system.  

8. Read TMR0WK(SYS_WKUPSSR0[8]) to get wake up source. 

 



 NUC980 

May 2, 2019  Page 16 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 USB ID Detection 

USB Host and USB Device share one port. When A-type cable (Host) plug in, user can detect it and 
run the Host program. Otherwise, when B-type cable (Device) plug in, user can run the Device 
program. 

The steps as below: 

1. Enable SYS_MISCIER register USBIDC_IEN bit. 

2. Cable plug in, interrupt occurred, checking SYS_MISCISR register USBIDC_IS bit. 

3. Checking SYS_MISCISR register USB0_IDS bit. 1 is USB Host connect; 0 is USB Device 
connect. 

4. Clear SYS_MISCISR register USBIDC_IS bit. 

5. Repeat steps 2〜4. 

  



 NUC980 

May 2, 2019  Page 17 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

2.3 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

SYS Base Address: 

SYS_BA = 0xB000_0000 

SYS_PDID SYS_BA+0x000 R Product Identifier Register 0x1030_D016[1] 

SYS_PWRON SYS_BA+0x004 R/W Power-On Setting Register 0xXXXX_XXXX[2] 

SYS_LVRDCR SYS_BA+0x020 R/W Low Voltage Reset & Detect Control Register 0x0000_0001 

SYS_MISCFCR SYS_BA+0x030 R/W Miscellaneous Function Control Register 0x0000_0200 

SYS_MISCIER SYS_BA+0x040 R/W Miscellaneous Interrupt Enable Register 0x0000_0000 

SYS_MISCISR SYS_BA+0x044 R/W Miscellaneous Interrupt Status Register 0x0001_0000 

SYS_WKUPSER0 SYS_BA+0x050 R/W System Wakeup Source Enable Register0 0x0000_0000 

SYS_WKUPSER1 SYS_BA+0x054 R/W System Wakeup Source Enable Register1 0x0000_0000 

SYS_WKUPSSR0 SYS_BA+0x058 R/W System Wakeup Source Status Register 0 0x0000_0000 

SYS_WKUPSSR1 SYS_BA+0x05C R/W System Wakeup Source Status Register 1 0x0000_0000 

SYS_AHBIPRST SYS_BA+0x060 R/W AHB IP Reset Control Register 0x0000_0000 

SYS_APBIPRST0 SYS_BA+0x064 R/W APB IP Reset Control Register 0 0x0000_0000 

SYS_APBIPRST1 SYS_BA+0x068 R/W APB IP Reset Control Register 1 0x0000_0000 

SYS_RSTSTS SYS_BA+0x06C R/W Reset Source Active Status Register 0x0000_00XX 

SYS_GPA_MFPL SYS_BA+0x070 R/W GPIOA Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPA_MFPH SYS_BA+0x074 R/W GPIOA High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPB_MFPL SYS_BA+0x078 R/W GPIOB Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPB_MFPH SYS_BA+0x07C R/W GPIOB High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPC_MFPL SYS_BA+0x080 R/W GPIOC Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPC_MFPH SYS_BA+0x084 R/W GPIOC High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPD_MFPL SYS_BA+0x088 R/W GPIOD Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPD_MFPH SYS_BA+0x08C R/W GPIOD High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPE_MFPL SYS_BA+0x090 R/W GPIOE Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPE_MFPH SYS_BA+0x094 R/W GPIOE High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPF_MFPL SYS_BA+0x098 R/W GPIOF Low Byte Multiple Function Control Register 0x0000_0000 

SYS_GPF_MFPH SYS_BA+0x09C R/W GPIOF High Byte Multiple Function Control Register 0x0000_0000 

SYS_GPG_MFPL SYS_BA+0x0A0 R/W GPIOG Low Byte Multiple Function Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 18 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

SYS_GPG_MFPH SYS_BA+0x0A4 R/W GPIOG High Byte Multiple Function Control Register 0x7777_7000 

SYS_DDR_DSCTL SYS_BA+0x0F0 R/W DDR I/O Driving Strength Control Register 0x0000_0000 

SYS_PORDISCR SYS_BA+0x100 R/W Power-On-Reset Disable Control Register 0x0000_00XX 

SYS_RSTDEBCTL SYS_BA+0x10C R/W Reset Pin De-bounce Control Register 0x0000_04B0 

SYS_REGWPCTL SYS_BA+0x1FC R/W Register Write-Protection Control Register 0x0000_0000 

Note: [1] Dependents on part number. 

Note: [2] Dependents on power-on setting. 



 NUC980 

May 2, 2019  Page 19 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3 CLOCK CONTROLLER 

3.1 Overview 

The clock controller generates all clocks for Video, Audio, CPU, system bus and all functionalities. 
This chip includes two PLL modules. The clock source for each functionality comes from the PLL, or 
from the external crystal input directly. For each clock there is a bit on the CLKEN register to control 
the clock ON or OFF individually, and the divider setting is in the CLK_DIVCTL register. The registers 
can also be used to control the clock enable or disable for power control. 

 

3.2 Features 

 Supports two PLLs, up to 500 MHz, for high performance system operation. 

 External 12 MHz high speed crystal input for precise timing operation. 

 External 32.768 kHz low speed crystal input for RTC function and low speed clock 
source. 



 NUC980 

May 2, 2019  Page 20 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3.3 Block Diagram 

APLL

UPLL

XT1_IN (12 MHz)

APLLFOUT

UPLLFOUT

APLL1to8

UPLL1to8

ADivCLK[7:0]

UDivCLK[7:0]

ADO_SW_DIV

ADC_SW_DIV

LCD_SW_DIV

SD_SW_DIV

SEN_SW_DIV

XIN32K (32.768 kHz)

SEN_CLK

USB_CLK
(48 MHz)

ADC_CLK

ECLKI
2

S

ECLKLCD

SD_CLK

HCLK4

HCLK3

HCLKCAP, ECLKCAP

HCLKJPEG, ECLKJPEG

CPUCLK, HCLK1, HCLK2, HCLK3, HCLK4, PCLK, HCLKSRAM,
DDR_CLK, DRAM_CLK,
HCLKI

2
S, HCLKLCD, HCLKUSBH, HCLKUSBD, HCLKEMAC0, HCLKEMAC1 ...

PCLKSPI0, PCLKSPI1, PCLKADC, PCLKI
2

C, PCLPWM, PCLKSMC0, PCLKSMC1 ...

UART0_SW_DIV
ECLKUART0

UART1_SW_DIV

UART2_SW_DIV

UART3_SW_DIV

UART4_SW_DIV

UART5_SW_DIV

UART6_SW_DIV

UART7_SW_DIV

UART8_SW_DIV

UART9_SW_DIV

UART10_SW_DIV

USB_SW_DIV

ECLKWDT

ECLKTIMER0

ECLKTIMER1

ECLKTIMER2

ECLKTIMER3

ECLKTIMER4

GPIO_SW_DIV

ECLKWWDT

ECLKGPIO

KPI_SW_DIV
ECLKKPI

SYS_SW_DIV

SYS_CLK

EMAC0_CLK_DIV
(÷ 2, ÷ 20)

EMAC1_CLK_DIV
(÷ 2, ÷ 20)

CPU_HCLK

CAP_ENG_CLK

JPEG_ENG_CLK

EMC0_MDCLK_DIV

EMAC0_MDCLK
EMAC1_MDCLK

RMII0_REFCLK (50 MHz)

RMII1_REFCLK (50 MHz)

EMCA0_RXCLK

EMCA0_TXCLK

EMAC1_RXCLK

EMAC1_TXCLK

WWDT_SW_DIV

WDT_SW_DIV

SMC0_SW_DIV
ECLKSMC0

SMC1_SW_DIV
ECLKSMC1

eMMC_SW_DIV
eMMC_CLK

ETIMER0_SW_DIV
ECLKETIMER0

ETIMER1_SW_DIV
ECLKETIMER1

ETIMER2_SW_DIV
ECLKETIMER2

ETIMER3_SW_DIV
ECLKETIMER3

PCLK

ECLKUART1

ECLKUART2

ECLKUART3

ECLKUART4

ECLKUART5

ECLKUART6

ECLKUART7

ECLKUART8

ECLKUART9

ECLKUART10

Note: Before clock switching, both the pre-selected and newly selected 

clock sources must be turned on and stable.  

Figure 3.3-1 Clock Controller Block Diagram 

  



 NUC980 

May 2, 2019  Page 21 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3.4 Functional Description 

 Pre-Scalar Counter 

To avoid outputting an unstable clock to system, clock controller implements a pre-scalar counter 
PRESCALE(CLK_PMCON[23:8]). Crystal is stable after the PRESCALE x 256 crystal cycles, the 
clock controller starts to output the clock to system. 

 Module Clock On/Off 

Each module of NUC980 has independent clock control. Before read/write module registers, the 
module clock should be enabled first. Clock On/Off setting is in CLK_HCLKEN, CLK_PCLKEN0 and 
CLK_PCLKEN1 registers. Module of AHB bus should use CLK_HCLKEN register. And module of APB 
bus should use CLK_PCLKEN0 or CLK_PCLKEN1 register. 

Using NAND controller as example, NAND is controlled by AHB bus FMI module. To enable NAND 
should set FMI and NAND. That is set the CLK_HCLKEN register FMI and NAND bit. Using UART0 as 
example, before print message from UART0, enable UART0 clock first. That is set the CLK_PCLKEN0 
register UART0 bit. 

 Clock Divider 

The modules which can connect external device has their own clock frequency divider to provide the 
correct clock output. Each frequency divider in addition to set the divisor, user can also select the 
clock source. Use an external SD card for example: clock source is UPLL, SD card needs 300 kHz for 
card identification mode, 50 MHz for data transfer mode. If UPLL is 300 MHz, the divider setting is as 
follow: 

1. SDH clock divider register is CLKDIV9, user should control SDH_N, SDH_S and SDH_SDIV. 

2. Set the SDH clock source is UPLL, this means fill the 11b to SDH_S bit. 

3. Initialize the frequency to 300 kHz – first UPLL (300 MHz) divides by 5 becomes 60 MHz, and 
then divides by 200 becomes 300 kHz. SDH_SDIV fill 4 and SDH_N fill 199 is for this setting. 

4. Data transfer frequency to 50 MHz – UPLL (300 MHz) divides by 5 becomes 50 MHz. 
SDH_SDIV fill 0 and SDH_N fill 5 is for this setting. 

 PLL Setting 

NUC980 PLL default setting is 264 MHz. PLL frequency adjustment needs to meet the following 
formula. 

𝐹𝑝𝑙𝑙𝑜𝑢𝑡 = 12 MHz ×
𝑁

𝑀 × 𝑃
 

𝐹𝑣𝑐𝑜      = 12 MHz ×
𝑁

𝑀
 

200 MHz < 𝐹𝑣𝑐𝑜 < 500 𝑀𝐻𝑧 

𝐹𝑝𝑓𝑑     =
12 𝑀𝐻𝑧

𝑀
=

𝐹𝑣𝑐𝑜

𝑁
 

N Fpfd Range 

1 11.0 ≤ Fpfd ≤ 80 

2 7.0 ≤ Fpfd ≤ 80 

3 5.0 ≤ Fpfd ≤ 80 



 NUC980 

May 2, 2019  Page 22 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4 4.0 ≤ Fpfd ≤ 80 

5 3.5 ≤ Fpfd ≤ 80 

6 3.0 ≤ Fpfd ≤ 80 

7 ~ 8 2.5 ≤ Fpfd ≤ 80 

9 ~ 10 3.5 ≤ Fpfd ≤ 80 

11 ~ 40 3.0 ≤ Fpfd ≤ 80 

41 ~ 128 2.5 ≤ Fpfd ≤ 80 

Table 3.4-1 PLL Configuration 

  



 NUC980 

May 2, 2019  Page 23 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

CLK Base Address: 

CLK_BA = 0xB000_0200 

CLK_PMCON CLK_BA+0x000 R/W Power Management Control Register 0xFFFF_FF03 

CLK_HCLKEN CLK_BA+0x010 R/W AHB Devices Clock Enable Control Register 0x0000_0527 

CLK_PCLKEN0 CLK_BA+0x018 R/W APB Devices Clock Enable Control Register 0 0x0000_0000 

CLK_PCLKEN1 CLK_BA+0x01C R/W APB Devices Clock Enable Control Register 1 0x0000_0000 

CLK_DIVCTL0 CLK_BA+0x020 R/W Clock Divider Control Register 0 0x0000_00XX 

CLK_DIVCTL1 CLK_BA+0x024 R/W Clock Divider Control Register 1 0x0000_0000 

CLK_DIVCTL2 CLK_BA+0x028 R/W Clock Divider Control Register 2 0x0000_1500 

CLK_DIVCTL3 CLK_BA+0x02C R/W Clock Divider Control Register 3 0x0000_0000 

CLK_DIVCTL4 CLK_BA+0x030 R/W Clock Divider Control Register 4 0x0000_0000 

CLK_DIVCTL5 CLK_BA+0x034 R/W Clock Divider Control Register 5 0x0000_0000 

CLK_DIVCTL6 CLK_BA+0x038 R/W Clock Divider Control Register 6 0x0000_0000 

CLK_DIVCTL7 CLK_BA+0x03C R/W Clock Divider Control Register 7 0x0000_0000 

CLK_DIVCTL8 CLK_BA+0x040 R/W Clock Divider Control Register 8 0x0000_0500 

CLK_DIVCTL9 CLK_BA+0x044 R/W Clock Divider Control Register 9 0x0000_0000 

CLK_APLLCON CLK_BA+0x060 R/W APLL Control Register 0x1000_0015 

CLK_UPLLCON CLK_BA+0x064 R/W UPLL Control Register 0xX000_0015 

CLK_PLLSTBCNTR CLK_BA+0x080 R/W PLL Stable Counter and Test Clock Control Register 0x0000_1800 

  



 NUC980 

May 2, 2019  Page 24 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4 ADVANCED INTERRUPT CONTROLLER (AIC) 

4.1 Overview 

An interrupt temporarily changes the sequence of program execution to react to a particular event 
such as power failure, watchdog timer timeout, transmit/receive request from Ethernet MAC Controller, 
and so on. The CPU processor provides two modes of interrupt, the Fast Interrupt (FIQ) mode for 
critical session and the Interrupt (IRQ) mode for general purpose. The IRQ request is occurred when 
the nIRQ input is asserted. Similarly, the FIQ request is occurred when the nFIQ input is asserted. The 
FIQ has privilege over the IRQ and can preempt an ongoing IRQ. It is possible to ignore the FIQ and 
the IRQ by setting the F and I bits in the current program status register (CPSR). 

The Advanced Interrupt Controller (AIC) is capable of processing the interrupt requests up to 64 
different sources. Currently, 63 interrupt sources are defined. Each interrupt source is uniquely 
assigned to an interrupt channel. For example, the watchdog timer interrupt is assigned to channel 1. 
The AIC implements a proprietary eight-level priority scheme that categories the available 63 interrupt 
sources into eight priority levels. Interrupt sources within the priority level 0 is the highest priority and 
the priority level 7 is the lowest. In order to make this scheme work properly, a certain priority level 
must be specified to each interrupt source during power-on initialization; otherwise, the system shall 
behave unexpectedly. Within each priority level, interrupt source that is positioned in a lower channel 
has a higher priority. Interrupt source that is active, enabled, and positioned in the lowest channel with 
priority level 0 is promoted to the FIQ. Interrupt sources within the priority levels other than 0 are 
routed to the IRQ. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is 
performed automatically by the AIC. 

Though interrupt sources originated from the chip itself are intrinsically high-level sensitive, the AIC 
can be configured as either low-level sensitive, high-level sensitive, negative-edge triggered, or 
positive-edge triggered to each interrupt source. 

4.2 Features 

 AMBA APB bus interface 

 External interrupts can be programmed as either edge-triggered or level-sensitive 

 External interrupts can be programmed as either low-active or high-active 

 Flags to reflect the status of each interrupt source 

 Individual mask for each interrupt source 

 Support proprietary 8-level interrupt scheme to employ the priority scheme. 

 Priority methodology is adopted to allow for interrupt daisy-chaining 

 Automatically masking out the lower priority interrupt during interrupt nesting 

 Automatically clearing the interrupt flag when the external interrupt source is programmed 
to be edge-triggered 



 NUC980 

May 2, 2019  Page 25 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4.3 Block Diagram 

AIC_CTRL

Recorder
(AIC_IREC)

Encoder
(AIC_
IENC)

status

mask rstatus status

nIRQ

PRIOR

POLARTRIG astatus

Rd_IPER

EOS

Vector
Generator

(AIC_
IVEC)

prior_status

VECTOR

nFIQ

APB
bus

CLREDG

IRQ

OIRQ

Wr_IPER

NUMBER

 

Figure 4.3-1 AIC Block Diagram 

  



 NUC980 

May 2, 2019  Page 26 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4.4 Functional Description 

 Interrupt channel configuration 

Each interrupt channel has an independent source control register to set its type and priority. The 
interrupt type of all NUC980 Series microprocessor internal peripherals is positive-level triggered. This 
shouldn’t be changed during normal operation. For the channel 2 and 3 that combine with 8 external 
interrupts nIRQ0~nIRQ7. The device driver must set the pertinent interrupt type according to the 
external devices. The priority level of each interrupt channel is completely decided by the interrupted 
device. After power-on or reset, all the channels are assigned to priority level 0~7 by AIC. The 
following figure shows the content of source control register(AIC_SRCCTLx). 

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

Reserved Type
Reserve

d
Priority

Type [7:6] Interrupt Type

Low Level Sensitive

High-Level Sensitive

Negitive-Edge

Triggered
Positive-Edge

Triggered

0 0

0 1

1 0

1 1

 

Figure 4.4-1 Interrupt Type and Priority 

 Interrupt Masking 

The NUC980 Series MCU AIC provides a set of registers to mask individual interrupt channel. The 
Mask Enable Command Register (AIC_INTEN0 and AIC_INTEN1) is used to enable interrupt. Write 1 
to a bit of AIC_INTENx will enable the corresponding interrupt channel. Oppositely, the Mask Disable 
Command Register (AIC_INTDIS0 and AIC_INTDIS1) is used to disable the interrupt. Write 1 to a bit 
of AIC_INTDISx will disable the corresponding interrupt channel. Write 0 to a bit of AIC_INTENx or 
AIC_INTDISx has no effect. Therefore, the device driver can arbitrarily change these two registers 
without keeping their original values. If it’s necessary, the device driver can read the Interrupt Mask 
Register (AIC_INTMSK0 or AIC_INTMSK1) to know whether the interrupt channel is enabled or 
disabled. If the interrupt channel is enabled, its corresponding bit is read as 1, otherwise 0。 

 Interrupt Handling Operation Flow 

The AIC implements a proprietary 8-level priority scheme. To use this mechanism, AIC_SRCCTLx 
needs to be programmed before enable the interrupt channels. The AIC provides individual 
AIC_FIQNUM and AIC_IRQNUM interrupt source number registers to identify the source of the 
interrupt that is the FIQ or IRQ. The FIQ or IRQ interrupt handler can obtain its own interrupt source by 
reading the AIC_FIQNUM and the AIC_IRQNUM registers, respectively. Under normal circumstances 
there is a function table to maintain the internal device and external device interrupt service routine. 
When the interrupt is approved by the CPU core, the FIQ or IRQ exception handler first executes and 
then it calls the appropriate interrupt service routine based on the contents of AIC_FIQNUM or 
AIC_IRQNUM. The exception handler and interrupt service routine should follow certain rules to let 
this mechanism work correctly. The rules are listed below. 



 NUC980 

May 2, 2019  Page 27 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

1. Configure interrupt source (AIC_SRCCTLx) 

2. Write 1 to a bit of AIC_INTENx will enable the corresponding interrupt channel 

3. Wait for the interrupt occur 

4. Enter the corresponding interrupt service routine. 

5. Read the AIC_FIQNUM or AIC_IRQNUM to obtain the vector, which is the current encoding 
interrupt channel number, which prevents a lower priority interrupt request 

6. The AIC_EOIS (End of IRQ Service Command Register) must be written any value at the end 
of the interrupt service routine. 

__irq void sysIrqHandler() 

{ 

    UINT32 volatile num; 

 

    num = inpw(REG_AIC_IRQNUM); 

    if (num != 0) 

        (*sysIrqHandlerTable[num])(); 

    outpw(REG_AIC_EOIS, 1); 

} 

 ENIT Usage 

The NUC980 series provides four external interrupts (EINT0~EINT4). The following table lists the 
GPIOs that can be configured as EINT functions. The use of external interrupts requires the 
configuration of GPIO registers. 

EINT Pin Name MFP 

EINT0 PA.0 5 

PA.13 8 

EINT1 PA.1 5 

PA.14 8 

EINT2 PD.0 4 

PB.3 3 

EINT3 PD.1 4 

PG.15 4 

Table 4.4-1 EINT GPIO Mapping 

The following steps to describe how to configure EINT0. 

1. Set GPIO (CLK_HCLKEN[11]) as 1 to enable GPIO clock. 

2. The PA.0 multi-function pin is set as the EINT0 function. 

3. Set PA->MODE as 0(PA0 is input mode) 

4. Set PA->INTTYPE as 1 (Level trigger interrupt). 



 NUC980 

May 2, 2019  Page 28 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5. Set PA->INTEN as 1 (Low level). 

6. Install EINT0's IRQ service routine 

7. Set the interrupt type to IRQ 

8. Enable interrupt (AIC_INTENx) 

In addition to the above steps, the corresponding interrupt source register PA->INTSRC needs to be 
cleared in the IRQ service routine. 

void UserEINT0Init(void) 

{ 

/* Enable GPIO engine clock */ 

    outpw(REG_CLK_HCLKEN,inpw(REG_CLK_HCLKEN) | (1<<11)); 

/* Configure PA.0 as EINT0 pin and enable interrupt by low level trigger */ 

    outpw(REG_SYS_GPA_MFPL, 0x5); 

PA->MODE = 0x0; //input mode 

    PA->INTTYPE = (1 << 0); //LEVEL 

    PA->INTEN = (1 << 0); // LOW LEVEL 

 

    /* EINT0 AIC setting */ 

    sysInstallISR(HIGH_LEVEL_SENSITIVE | IRQ_LEVEL_1, EINT0_IRQn, 
(PVOID)EINT0_IRQHandler); 

    sysSetLocalInterrupt(ENABLE_IRQ); 

    sysEnableInterrupt(EINT0_IRQn); 

} 

 

INT32 EINT0_IRQHandler(void) 

{ 

    PA->INTSRC = PA->INTSRC; 

    sysprintf("IRQ Num=%d\n", inpw(AIC_IRQNUM)); 

} 

  



 NUC980 

May 2, 2019  Page 29 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Interrupt Source  

The following is a list of all NUC980 interrupt sources. 

Priority Name Mode Source 

1 (Highest) WDT_INT Positive Level Watch Dog Timer Interrupt 

2 WWDT_INT Positive Level Windowed-WDT Interrupt 

3 LVD_INT Positive Level Low Voltage Detect Interrupt 

4 EXT_INT0 Positive Level External Interrupt 0 

5 EXT_INT1 Positive Level External Interrupt 1 

6 EXT_INT2 Positive Level External Interrupt 2 

7 EXT_INT3 Positive Level External Interrupt 3 

8 GPA_INT Positive Level GPIO Port A Interrupt 

9 GPB_INT Positive Level GPIO Port B Interrupt 

10 GPC_INT Positive Level GPIO Port C Interrupt 

11 GPD_INT Positive Level GPIO Port D Interrupt 

12 I2S_INT Positive Level Audio Controller Interrupt 

13 Reserved Reserved Reserved 

14 VCAP0_INT Positive Level Sensor Interface Controller 0 Interrupt 

15 RTC_INT Positive Level RTC Interrupt 

16 TIMER0_INT Positive Level Timer 0 Interrupt 

17 TIMER1_INT Positive Level Timer 1 Interrupt 

18 ADC_INT Positive Level ADC Interrupt 

19 EMC0RX_INT Positive Level EMC 0 RX Interrupt 

20 EMC1RX_INT Positive Level EMC 1 RX Interrupt 

21 EMC0TX_INT Positive Level EMC 0 TX Interrupt 

22 EMC1TX_INT Positive Level EMC 1 TX Interrupt 

23 EHCI_INT Positive Level USB 2.0 Host Controller Interrupt 

24 OHCI_INT Positive Level USB 1.1 Host Controller Interrupt 

25 PDMA0_INT Positive Level PDMA Channel 0 Interrupt 

26 PDMA1_INT Positive Level PDMA Channel 1 Interrupt 

27 SDH_INT Positive Level SD/SDIO Host Interrupt 

28 FMI_INT Positive Level SIC Interrupt 



 NUC980 

May 2, 2019  Page 30 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

29 UDC_INT Positive Level USB Device Controller Interrupt 

30 TIMER2_INT Positive Level Timer 2 Interrupt 

31 TIMER3_INT Positive Level Timer 3 Interrupt 

32 TIMER4_INT Positive Level Timer 4 Interrupt 

33 VCAP1_INT Positive Level Sensor Interface Controller 1 Interrupt 

34 TIMER5_INT Positive Level Timer5 Interrupt 

35 CRYPTO_INT Positive Level CRYPTO Engine Interrupt 

36 UR0_INT Positive Level UART 0 Interrupt 

37 UR1_INT Positive Level UART 1 Interrupt 

38 UR2_INT Positive Level UART 2 Interrupt 

39 UR4_INT Positive Level UART 4 Interrupt 

40 UR6_INT Positive Level UART 6 Interrupt 

41 UR8_INT Positive Level UART 8 Interrupt 

42 CAN3_INT Positive Level CAN 3 Interrupt 

43 UR3_INT Positive Level UART 3 Interrupt 

44 UR5_INT Positive Level UART 5 Interrupt 

45 UR7_INT Positive Level UART 7 Interrupt 

46 UR9_INT Positive Level UART 9 Interrupt 

47 I2C2_INT Positive Level I2C 2 Interrupt 

48 I2C3_INT Positive Level I2C 3 Interrupt 

49 GPE_INT Positive Level GPIO Port E Interrupt 

50 SPI2_INT Positive Level SPI 2 Interrupt 

51 SPI0_INT Positive Level SPI 0 Interrupt 

52 SPI1_INT Positive Level SPI 1 Interrupt 

53 I2C0_INT Positive Level I2C 0 Interrupt 

54 I2C1_INT Positive Level I2C 1 Interrupt 

55 SMC0_INT Positive Level Smart Card 0 Interrupt 

56 SMC1_INT Positive Level Smart Card 1 Interrupt 

57 GPF_INT Positive Level GPIO Port F Interrupt 

58 CAN0_INT Positive Level CAN 0 Interrupt 

59 CAN1_INT Positive Level CAN 1 Interrupt 



 NUC980 

May 2, 2019  Page 31 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

60 PWM0_INT Positive Level PWM 0 Interrupt 

61 PWM1_INT Positive Level PWM 1 Interrupt 

62 CAN2_INT Positive Level CAN 2 Interrupt 

63 GPG_INT Positive Level GPIO Port G Interrupt 

Table 4.4-2 Interrupt Source 

  



 NUC980 

May 2, 2019  Page 32 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4.5 Register Map 

R: read only, W: write only, R/W: both read and write.  

Register Address R/W Description Reset Value 

AIC_BA = 0xB800_2000 

 AIC_SRCCTL0 AIC_BA+0x000 R/W  Source Control Register 0 0x4747_4747 

 AIC_SRCCTL1 AIC_BA+0x000 R/W  Source Control Register 1 0x4747_4747 

 AIC_SRCCTL2 AIC_BA+0x004 R/W  Source Control Register 2 0x4747_4747 

 AIC_SRCCTL3 AIC_BA+0x008 R/W  Source Control Register 3 0x4747_4747 

 AIC_SRCCTL4 AIC_BA+0x00C R/W  Source Control Register 4 0x4747_4747 

 AIC_SRCCTL5 AIC_BA+0x010 R/W  Source Control Register 5 0x4747_4747 

 AIC_SRCCTL6 AIC_BA+0x014 R/W  Source Control Register 6 0x4747_4747 

 AIC_SRCCTL7 AIC_BA+0x018 R/W  Source Control Register 7 0x4747_4747 

 AIC_SRCCTL8 AIC_BA+0x01C R/W  Source Control Register 8 0x4747_4747 

 AIC_SRCCTL9 AIC_BA+0x020 R/W  Source Control Register 9 0x4747_4747 

 AIC_SRCCTL10 AIC_BA+0x024 R/W  Source Control Register 10 0x4747_4747 

 AIC_SRCCTL11 AIC_BA+0x028 R/W  Source Control Register 11 0x4747_4747 

 AIC_SRCCTL12 AIC_BA+0x02C R/W  Source Control Register 12 0x4747_4747 

 AIC_SRCCTL13 AIC_BA+0x030 R/W  Source Control Register 13 0x4747_4747 

 AIC_SRCCTL14 AIC_BA+0x034 R/W  Source Control Register 14 0x4747_4747 

 AIC_SRCCTL15 AIC_BA+0x038 R/W  Source Control Register 15 0x4747_4747 

 AIC_RAWSTS0 AIC_BA+0x100 R  Interrupt Raw Status Register 0 0x0000_0000 

 AIC_RAWSTS1 AIC_BA+0x104 R  Interrupt Raw Status Register 1 0x0000_0000 

 AIC_ACTSTS0 AIC_BA+0x108 R  Interrupt Active Status Register 0 0x0000_0000 

 AIC_ACTSTS1 AIC_BA+0x10C R  Interrupt Active Status Register 1 0x0000_0000 

 AIC_INTSTS0 AIC_BA+0x110 R  Interrupt Status Register 0 0x0000_0000 

 AIC_INTSTS1 AIC_BA+0x114 R  Interrupt Status Register 1 0x0000_0000 

 AIC_IRQNUM AIC_BA+0x120 R  IRQ Source Number Register 0x0000_0000 

 AIC_FIQNUM AIC_BA+0x124 R  FIQ Source Number Register 0x0000_0000 

 AIC_INTMSK0 AIC_BA+0x128 R  Interrupt Mask Register 0 0x0000_0000 

 AIC_INTMSK1 AIC_BA+0x12C R  Interrupt Mask Register 1 0x0000_0000 

 AIC_INTEN0 AIC_BA+0x130 W  Interrupt Mask Enable Command Register 0 Undefined 

 AIC_INTEN1 AIC_BA+0x134 W  Interrupt Mask Enable Command Register 1 Undefined 

 AIC_INTDIS0 AIC_BA+0x138 W  Interrupt Mask Disable Command Register 0 Undefined 

 AIC_INTDIS1 AIC_BA+0x13C W  Interrupt Mask Disable Command Register 1 Undefined 

 AIC_EOIS AIC_BA+0x150 W  End of IRQ Service Command Register Undefined 



 NUC980 

May 2, 2019  Page 33 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 AIC_EOFS AIC_BA+0x154 W  End of FIQ Service Command Register Undefined 

 



 NUC980 

May 2, 2019  Page 34 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5 EXTERNAL BUS INTERFACE (EBI) 

5.1 Overview 

This chip supports External Bus Interface (EBI), which controls the access to the external memory 
(SRAM) and External I/O devices. The EBI has up to 3 chip select signals to select different devices 
with 20-bit address bus. It supports 8-bit and 16-bit external data bus width for each bank 

5.2 Features 

 Support SRAM and external I/O devices. 

 Supports up to three memory banks. 

 Supports dedicated external chip select pin with polarity control for each bank 

 Supports accessible space up to 1 Mbytes for each bank, actually external addressable 
space is dependent on package pin out 

 Supports 8-/16-bit data width 

 Supports Timing parameters individual adjustment for each memory block 

 Supports LCD interface i80 mode 

 Supports PDMA mode 

 Supports variable external bus base clock (MCLK) which based on HCLK 

 Supports configurable idle cycle for different access condition: Idle of Write command 
finish (W2X) and Idle of Read-to-Read (R2R) 

 Supports address bus and data bus separate mode 

5.3 Block Diagram 

A
H

B
 B

u
s

EBI 

Register 

Controller

DW16

EBI State 

Machine

Output 

Controller

EBI_AD[15:0]

Idle Cycle 

Timing 

Controller

EBI Signal 

Timing 

Controller

TACC

TAHD

R2R

W2X

MCLK 

DividerMCLKDIV

HCLK

EBI_MCLK

EBI request

EBI 

Address Hit 

and 

Request 

Controller

EN

EBI_nCS[2:0]

EBI_nRD

EBI_nWR

WAHDOFF

RAHDOFF

WBUFEN

EBI_ADR[19:0]

 

Figure 5.3-1 EBI Block Diagram 

 



 NUC980 

May 2, 2019  Page 35 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5.4 Functional Description 

 Basic Configuration 

Before using External Bus Interface, it is necessary to configure related pins as the EBI function and 
enable EBI’s clock. For EBI related pin configuration, please refer to following table to know how to 
configure related pins as the EBI function. To enable EBI’s clock for operation, please set EBI 
(CLK_HCLKEN[9]) high. 

Group Pin Name GPIO MFP 

EBI 

EBI_AD0 PG. 10, PC. 0 MFP1 

EBI_AD1 
PC. 1 MFP1  

PD. 12 MFP8 

E  EBI_AD2 
PC. 2 MFP1 

PD. 13 MFP8 

EBI_AD3 
PC. 3 MFP1 

PD. 14 MFP8 

EBI_AD4 
PC. 4 MFP1 

PD. 15 MFP8 

EBI_AD5 
PC. 5 MFP1 

PF. 0 MFP8 

EBI_AD6 
PC. 6 MFP1 

PF. 1 MFP8 

EBI_AD7 
PC. 7 MFP1 

PF. 2 MFP8 

EBI_AD8 
PC. 8 MFP1 

PF. 3  MFP8 

EBI_AD9 
PC. 9 MFP1 

PF. 4  MFP8 

EBI_AD10 
PC. 10 MFP1 

PF. 5  MFP8 

EBI_AD11 
PC. 11 MFP1 

PF. 6   MFP8 

EBI_AD12 
PC. 12 MFP1 

PF. 7  MFP8 

EBI_AD13 
PC. 13 MFP1 

PF. 8  MFP8 

EBI_AD14 
PC. 14 MFP1 

PF. 9  MFP8 



 NUC980 

May 2, 2019  Page 36 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

EBI_AD15 
PC. 15 MFP1 

PF. 10 MFP8 

EBI_ADR0 PG. 0 MFP1 

EBI_ADR1 PG. 1 MFP1 

EBI_ADR2 PG. 2 MFP1 

EBI_ADR3 PG. 3 MFP1 

EBI_ADR4 PG. 6 MFP1 

EBI_ADR5 PG. 7 MFP1 

EBI_ADR6 PG. 8 MFP1 

EBI_ADR7 PG. 9 MFP1 

EBI_ADR8 PA. 12 MFP1 

EBI_ADR9 PA. 11 MFP1 

EBI_ADR10 PA. 10 MFP1 

EBI_ADR11 PB. 8 MFP1 

EBI_ADR12 PB. 0, PG. 5 MFP1 

EBI_ADR13 PA. 13, PB. 6 MFP1 

EBI_ADR14 PA. 14, PB. 4 MFP1 

EBI_ADR15 PB. 7  MFP1 

EBI_ADR16 PB. 5  MFP1 

EBI_ADR17 PB. 1 MFP1 

EBI_ADR18 PB. 3, PG. 4 MFP1 

EBI_ADR19 PA. 5, PB. 2 MFP1 

EBI_MCLK PA. 1 MFP2 

EBI_nCS0 PA. 9 MFP1 

EBI_nCS1 PA. 6 MFP1 

EBI_nCS2 PA. 1 MFP1 

EBI_nRD PA. 8 MFP1 

EBI_nWR PA. 7 MFP1 

Table 5.4-1 EBI Multi Function Pin List 

 Operation and Access Time Control 

The EBI mapping address is located at 0x6000_0000 ~ 0x602F_FFFF and the total memory space is 
3 Mbytes. When system request address hits EBI’s memory space, the corresponding EBI chip select 
signal is assert and EBI state machine operates. 

At the start of EBI access, chip select (EBI_nCS0, EBI_nCS1 and EBI_nCS2) asserts to low and wait 
one EBI_MCLK for address setup time (tASU) for address stable.Then EBI_nRD asserts to low when 
read access or EBI_nWR asserts to low when write access. Then EBI_nRD or EBI_nWR asserts to 
high after keeps access time (tACC) for reading output stable or writing finish. After that, EBI signals 



 NUC980 

May 2, 2019  Page 37 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

keep for data access hold time (tAHD) and chip select asserts to high, address is released by current 
access control. 

The EBI controller provides a flexible timing control for different external device. In EBI timing control, 
tASU is fixed to 1 EBI_MCLK cycle, tAHD can modulate to 1~8 EBI_MCLK cycles by setting TAHD 
(EBI_TCTLx[10:8]), tACC can modulate to 1~32 EBI_MCLK cycles by setting TACC 
(EBI_TCTLx[7:3]). Some external device can support zero data access hold time accessing, the EBI 
controller can skipped tAHD to increase access speed by setting WAHDOFF (EBI_TCTLx[23]) and 
RAHDOFF (EBI_TCTLx[22]). 

For each chip select, the EBI provides individual register with timing control, please refer to following 
table. 

Parameter Value Unit Description 

tASU 1 MCLK Address Latch Setup Time. 

tACC 1 ~ 32 MCLK Data Access Time. Controlled by TACC (EBI_TCTLx[7:3]). 

tAHD 1 ~ 8 MCLK Data Access Hold Time. Controlled by TAHD (EBI_TCTLx[10:8]). 

IDLE 0 ~ 15 MCLK Idle Cycle. Controlled by R2R (EBI_TCTLx[27:24]) and W2X (EBI_TCTLx[15:12]). 

Table 5.4-2 EBI Timing Description 

  



 NUC980 

May 2, 2019  Page 38 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5.5 Register Map 

R: read only, W: write only, R/W: both read and write.  

Register Offset R/W Description Reset Value 

EBI Base Address: 

EBI_BA = 0xB001_0000 

EBI_CTL0 EBI_BA+0x00 R/W External Bus Interface Bank0 Control Register 0x0000_0008 

EBI_TCTL0 EBI_BA+0x04 R/W External Bus Interface Bank0 Timing Control Register 0x0000_0000 

EBI_CTL1 EBI_BA+0x10 R/W External Bus Interface Bank1 Control Register 0x0000_0000 

EBI_TCTL1 EBI_BA+0x14 R/W External Bus Interface Bank1 Timing Control Register 0x0000_0000 

EBI_CTL2 EBI_BA+0x20 R/W External Bus Interface Bank2 Control Register 0x0000_0000 

EBI_TCTL2 EBI_BA+0x24 R/W External Bus Interface Bank2 Timing Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 39 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

6 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) 

6.1 Overview 

The NUC980 series have up to 104 General-Purpose I/O (GPIO) pins and can be shared with other 
function pins depending on the chip configuration. These 148 pins are arranged in 10 ports named as 
PA, PB, PC, PD, PE, PF and PG. PA, PC, PD, and PG have 16 pins on port, PB has 14 pins on port, 
PE and PF has 13 pins on port. Each of the 104 I/O pins is independent and can be easily configured 
by user to meet various system configurations and design requirements. After reset, all 148 I/O pins 
are configured in General-Purpose I/O Input mode. 

When any of the 104 I/O pins used as a General-Purpose I/O, its I/O type can be configured by user 
individually as Input or Output mode. In Input mode, the input buffer type could be selected as CMOS 

input buffer or Schmitt trigger input buffer. Each I/O pin also equips a pull-up resistor (45 k ~ 82 k) 

and a pull-down resistor (37 k ~ 91 k). The enable of pull-up/pull-down resistor is controllable. 

6.2 Features 

 Four I/O modes: 

– Quasi-bidirectional mode 

– Push-Pull Output mode 

– Open-Drain Output mode 

– Input only with high impendence mode 

 TTL/Schmitt trigger input selectable 

 I/O pin can be configured as interrupt source with edge/level setting 

 Supports High Drive and High Slew Rate I/O mode 

 I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode 

 Enabling the pin interrupt function will also enable the wake-up function 



 NUC980 

May 2, 2019  Page 40 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

6.3 Block Diagram 
A

P
B

 B
u

s

PA[15:0]

PA[15:0]

Control Register

PB[13:0]

Control Register

PC[15:0]

Control Register

PD[15:0]

Control Register

PE[12:0]

Control Register

PF[12:0]

Control Register

PG[15:0]

Control Register

De-bounce Control Register

Control Registers

Interrupt,

Wake-up Event

Detector

PB[13:0]

PC[15:0]

PD[15:0]

PE[12:0]

PF[12:0]

PG[15:0]

GPIO_INT

 

Figure 6.3-1 GPIO Block Diagram 

  



 NUC980 

May 2, 2019  Page 41 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

6.4 Functional Description 

 Multiple function pin Configuration 

To configure pin Px.n as a General-Purpose I/O, set the corresponding field of register 
SYS_GPA_MFPL, SYS_GPA_MFPH, SYS_GPB_MFPL, SYS_GPB_MFPH, SYS_GPC_MFPL, 
SYS_GPC_MFPH, SYS_GPD_MFPL, SYS_GPD_MFPH, SYS_GPE_MFPL, SYS_GPE_MFPH, 
SYS_GPF_MFPL, SYS_GPF_MFPH, SYS_GPG_MFPL and SYS_GPG_MFPH to 0. 

For example, if user want to configure pin PA.0 as a General-Purpose I/O, it’s necessary to set 
MFP_GPA0 (SYS_GPA_MFPL[4:7]) to 0.  

int value; 

// Read SYS_GPA_MFPL register value 

value = inpw(SYS_GPA_MFPL); 

// Set PA.1 as I/O pin 

value = value & (~0x000000F0); 

// Save the setting to SYS_GPA_MFPL register 

outpw(SYS_GPA_MFPL, value); 

 Input Mode 

Set MODEn (Px_MODE[2n+1:2n]) to 00 as the Px.n pin is in Input mode and the I/O pin is in tri-state 
(high impedance) without output drive capability. The PIN (Px_PIN[n]) value reflects the status of the 
corresponding port pins. 

 Push-pull Output Mode 

Set MODEn (Px_MODE[2n+1:2n]) to 01 as Px.n pin is in Push-pull Output mode and the I/O pin 
supports digital output function with source/sink current capability. The bit value in the corresponding 
DOUT (Px_DOUT[n]) is driven on the pin. 

Port PinPort Pin

NN

PP

VDDVDD

Port Latch DataPort Latch Data

Input DataInput Data
 

Figure 6.4-1 Push-Pull Output 

 Open-drain Mode 

Set MODEn (Px_MODE[2n+1:2n]) to 10 the Px.n pin is in Open-drain mode and the digital output 
function of I/O pin supports only sink current capability, an external pull-up register is needed for 



 NUC980 

May 2, 2019  Page 42 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

driving high state. If the bit value in the corresponding DOUT (Px_DOUT[n]) bit is 0, the pin drive a low 
output on the pin. If the bit value in the corresponding DOUT (Px_DOUT[n]) bit is 1, the pin output 
drives high that is controlled by external pull high resistor. 

Port PinPort Pin

NN
Port Latch DataPort Latch Data

Input DataInput Data
 

Figure 6.4-2 Open-Drain Output 

 Quasi-bidirectional Mode  

Set MODEn (Px_MODE[2n+1:2n]) to 11 as the Px.n pin is in Quasi-bidirectional mode and the I/O pin 
supports digital output and input function at the same time but the source current is only up to 
hundreds uA. Before the digital input function is performed the corresponding DOUT (Px_DOUT[n]) bit 
must be set to 1. The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If 
the bit value in the corresponding DOUT (Px_DOUT[n]) bit is 0, the pin drive a low output on the pin. If 
the bit value in the corresponding DOUT (Px_DOUT[n]) bit is 1, the pin will check the pin value. If pin 
value is high, no action takes. If pin state is low, the pin will drive strong high with 2 clock cycles on the 
pin and then disable the strong output drive. Meanwhile, the pin status is controlled by internal pull-up 
resistor. Note that the source current capability in quasi-bidirectional mode is only about 200 uA to 30 
uA for VDD is form 5.0 V to 2.5 V. 

Port PinPort Pin

NN

PP

VDDVDD

Port Latch DataPort Latch Data

Input DataInput Data

2 CPU
Clock Delay

PP PP
StrongStrong

Very
Weak

Very
Weak WeakWeak

 

Figure 6.4-3 Quasi-Bidirectional I/O Mode 

 Schmitt trigger mode 

The Schmitt Trigger is a logic input type that provides two different threshold voltage levels for rising 
and falling edge. This is useful when we have noisy input signals from which we want to get square 
wave signals. 



 NUC980 

May 2, 2019  Page 43 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Pull-up/Pull-down mode 

Using pull-up/pull-down control to ensure the input state. The pull-up control only valid when MODE 
(Px_MODE[n])) set as tri-state and open-drain mode. The pull-down control only valid when MODE 
(Px_MODE[n])) set as tri-state mode. 

 GPIO Digital Input Path Disable Control 

User can disable GPIO digital input path by setting DINOFF (Px_DINOFF[n]) to avoid input current 
leakage. When GPIO digital input path is disabled, the digital input pin value PIN (Px_PIN[n]) is tied to 
low.  

 GPIO Interrupt and Wake-up Function 

Each GPIO pin can be set as chip interrupt source by setting correlative RHIEN (Px_INTEN[n+16])/ 
FLIEN (Px_INTEN[n]) bit and TYPE (Px_INTTYPE[n]). There are five types of interrupt condition can 
be selected: low level trigger, high level trigger, falling edge trigger, rising edge trigger and both rising 
and falling edge trigger. For edge trigger condition, user can enable input signal de-bounce function to 
prevent unexpected interrupt happened which caused by noise. The de-bounce clock source and 
sampling cycle period can be set through DBCLKSRC (GPIO_DBCTL[4]) and DBCLKSEL 
(GPIO_DBCTL[3:0]) register. 

The GPIO can also be the chip wake-up source when chip enters Idle/Power-down mode. The setting 
of wake-up trigger condition is the same as GPIO interrupt trigger. 

  



 NUC980 

May 2, 2019  Page 44 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

6.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

GPIO Base Address: 

GPIO_BA = 0xB000_4000 

PA_MODE GPIO_BA+0x000 R/W PA I/O Mode Control 0xXXXX_XXXX 

PA_DINOFF GPIO_BA+0x004 R/W PA Digital Input Path Disable Control 0x0000_0000 

PA_DOUT GPIO_BA+0x008 R/W PA Data Output Value 0x0000_FFFF 

PA_DATMSK GPIO_BA+0x00C R/W PA Data Output Write Mask 0x0000_0000 

PA_PIN GPIO_BA+0x010 R PA Pin Value 0x0000_XXXX 

PA_DBEN GPIO_BA+0x014 R/W PA De-Bounce Enable Control Register 0x0000_0000 

PA_INTTYPE GPIO_BA+0x018 R/W PA Interrupt Trigger Type Control 0x0000_0000 

PA_INTEN GPIO_BA+0x01C R/W PA Interrupt Enable Control Register 0x0000_0000 

PA_INTSRC GPIO_BA+0x020 R/W PA Interrupt Source Flag 0x0000_XXXX 

PA_SMTEN GPIO_BA+0x024 R/W PA Input Schmitt Trigger Enable Register 0x0000_0000 

PA_SLEWCTL GPIO_BA+0x028 R/W PA High Slew Rate Control Register 0x0000_0000 

PB_MODE GPIO_BA+0x040 R/W PB I/O Mode Control 0xXXXX_XXXX 

PB_DINOFF GPIO_BA+0x044 R/W PB Digital Input Path Disable Control 0x0000_0000 

PB_DOUT GPIO_BA+0x048 R/W PB Data Output Value 0x0000_FFFF 

PB_DATMSK GPIO_BA+0x04C R/W PB Data Output Write Mask 0x0000_0000 

PB_PIN GPIO_BA+0x050 R PB Pin Value 0x0000_XXXX 

PB_DBEN GPIO_BA+0x054 R/W PB De-Bounce Enable Control Register 0x0000_0000 

PB_INTTYPE GPIO_BA+0x058 R/W PB Interrupt Trigger Type Control 0x0000_0000 

PB_INTEN GPIO_BA+0x05C R/W PB Interrupt Enable Control Register 0x0000_0000 

PB_INTSRC GPIO_BA+0x060 R/W PB Interrupt Source Flag 0x0000_XXXX 

PB_SMTEN GPIO_BA+0x064 R/W PB Input Schmitt Trigger Enable Register 0x0000_0000 

PB_SLEWCTL GPIO_BA+0x068 R/W PB High Slew Rate Control Register 0x0000_0000 

PC_MODE GPIO_BA+0x080 R/W PC I/O Mode Control 0xXXXX_XXXX 

PC_DINOFF GPIO_BA+0x084 R/W PC Digital Input Path Disable Control 0x0000_0000 

PC_DOUT GPIO_BA+0x088 R/W PC Data Output Value 0x0000_FFFF 

PC_DATMSK GPIO_BA+0x08C R/W PC Data Output Write Mask 0x0000_0000 

PC_PIN GPIO_BA+0x090 R PC Pin Value 0x0000_XXXX 



 NUC980 

May 2, 2019  Page 45 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

PC_DBEN GPIO_BA+0x094 R/W PC De-Bounce Enable Control Register 0x0000_0000 

PC_INTTYPE GPIO_BA+0x098 R/W PC Interrupt Trigger Type Control 0x0000_0000 

PC_INTEN GPIO_BA+0x09C R/W PC Interrupt Enable Control Register 0x0000_0000 

PC_INTSRC GPIO_BA+0x0A0 R/W PC Interrupt Source Flag 0x0000_XXXX 

PC_SMTEN GPIO_BA+0x0A4 R/W PC Input Schmitt Trigger Enable Register 0x0000_0000 

PC_SLEWCTL GPIO_BA+0x0A8 R/W PC High Slew Rate Control Register 0x0000_0000 

PD_MODE GPIO_BA+0x0C0 R/W PD I/O Mode Control 0xXXXX_XXXX 

PD_DINOFF GPIO_BA+0x0C4 R/W PD Digital Input Path Disable Control 0x0000_0000 

PD_DOUT GPIO_BA+0x0C8 R/W PD Data Output Value 0x0000_FFFF 

PD_DATMSK GPIO_BA+0x0CC R/W PD Data Output Write Mask 0x0000_0000 

PD_PIN GPIO_BA+0x0D0 R PD Pin Value 0x0000_XXXX 

PD_DBEN GPIO_BA+0x0D4 R/W PD De-Bounce Enable Control Register 0x0000_0000 

PD_INTTYPE GPIO_BA+0x0D8 R/W PD Interrupt Trigger Type Control 0x0000_0000 

PD_INTEN GPIO_BA+0x0DC R/W PD Interrupt Enable Control Register 0x0000_0000 

PD_INTSRC GPIO_BA+0x0E0 R/W PD Interrupt Source Flag 0x0000_XXXX 

PD_SMTEN GPIO_BA+0x0E4 R/W PD Input Schmitt Trigger Enable Register 0x0000_0000 

PD_SLEWCTL GPIO_BA+0x0E8 R/W PD High Slew Rate Control Register 0x0000_0000 

PE_MODE GPIO_BA+0x100 R/W PE I/O Mode Control 0xXXXX_XXXX 

PE_DINOFF GPIO_BA+0x104 R/W PE Digital Input Path Disable Control 0x0000_0000 

PE_DOUT GPIO_BA+0x108 R/W PE Data Output Value 0x0000_FFFF 

PE_DATMSK GPIO_BA+0x10C R/W PE Data Output Write Mask 0x0000_0000 

PE_PIN GPIO_BA+0x110 R PE Pin Value 0x0000_XXXX 

PE_DBEN GPIO_BA+0x114 R/W PE De-Bounce Enable Control Register 0x0000_0000 

PE_INTTYPE GPIO_BA+0x118 R/W PE Interrupt Trigger Type Control 0x0000_0000 

PE_INTEN GPIO_BA+0x11C R/W PE Interrupt Enable Control Register 0x0000_0000 

PE_INTSRC GPIO_BA+0x120 R/W PE Interrupt Source Flag 0x0000_XXXX 

PE_SMTEN GPIO_BA+0x124 R/W PE Input Schmitt Trigger Enable Register 0x0000_0000 

PE_SLEWCTL GPIO_BA+0x128 R/W PE High Slew Rate Control Register 0x0000_0000 

PE_DRVCTL GPIO_BA+0x12C R/W PE High Drive Strength Control Register 0x0000_0000 

PF_MODE GPIO_BA+0x140 R/W PF I/O Mode Control 0x0000_XXXX 

PF_DINOFF GPIO_BA+0x144 R/W PF Digital Input Path Disable Control 0x0000_0000 



 NUC980 

May 2, 2019  Page 46 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

PF_DOUT GPIO_BA+0x148 R/W PF Data Output Value 0x0000_00FF 

PF_DATMSK GPIO_BA+0x14C R/W PF Data Output Write Mask 0x0000_0000 

PF_PIN GPIO_BA+0x150 R PF Pin Value 0x0000_00XX 

PF_DBEN GPIO_BA+0x154 R/W PF De-Bounce Enable Control Register 0x0000_0000 

PF_INTTYPE GPIO_BA+0x158 R/W PF Interrupt Trigger Type Control 0x0000_0000 

PF_INTEN GPIO_BA+0x15C R/W PF Interrupt Enable Control Register 0x0000_0000 

PF_INTSRC GPIO_BA+0x160 R/W PF Interrupt Source Flag 0x0000_00XX 

PF_SMTEN GPIO_BA+0x164 R/W PF Input Schmitt Trigger Enable Register 0x0000_0000 

PF_SLEWCTL GPIO_BA+0x168 R/W PF High Slew Rate Control Register 0x0000_0000 

PG_MODE GPIO_BA+0x180 R/W PG I/O Mode Control 0x0000_XXXX 

PG_DINOFF GPIO_BA+0x184 R/W PG Digital Input Path Disable Control 0x0000_0000 

PG_DOUT GPIO_BA+0x188 R/W PG Data Output Value 0x0000_00FF 

PG_DATMSK GPIO_BA+0x18C R/W PG Data Output Write Mask 0x0000_0000 

PG_PIN GPIO_BA+0x190 R PG Pin Value 0x0000_00XX 

PG_DBEN GPIO_BA+0x194 R/W PG De-Bounce Enable Control Register 0x0000_0000 

PG_INTTYPE GPIO_BA+0x198 R/W PG Interrupt Trigger Type Control 0x0000_0000 

PG_INTEN GPIO_BA+0x19C R/W PG Interrupt Enable Control Register 0x0000_0000 

PG_INTSRC GPIO_BA+0x1A0 R/W PG Interrupt Source Flag 0x0000_00XX 

PG_SMTEN GPIO_BA+0x1A4 R/W PG Input Schmitt Trigger Enable Register 0x0000_0000 

PG_SLEWCT
L 

GPIO_BA+0x1A8 
R/W 

PG High Slew Rate Control Register 0x0000_0000 

GPIO_DBCTL GPIO_BA+0x440 R/W Interrupt De-bounce Control Register 0x0000_0020 

PAn_PDIO 

n=0,1..15 
GPIO_BA+0x800+(0x04 * n) R/W GPIO PA.n Pin Data Input/Output Register 0x0000_000X 

PBn_PDIO 

n=0,1..15 
GPIO_BA+0x840+(0x04 * n) R/W GPIO PB.n Pin Data Input/Output Register 0x0000_000X 

PCn_PDIO 

n=0,1..15 
GPIO_BA+0x880+(0x04 * n) R/W GPIO PC.n Pin Data Input/Output Register 0x0000_000X 

PDn_PDIO 

n=0,1..15 
GPIO_BA+0x8C0+(0x04 * n) R/W GPIO PD.n Pin Data Input/Output Register 0x0000_000X 

PEn_PDIO 

n=0,1..14 
GPIO_BA+0x900+(0x04 * n) R/W GPIO PE.n Pin Data Input/Output Register 0x0000_000X 

PFn_PDIO 

n=0,1..7 
GPIO_BA+0x940+(0x04 * n) R/W GPIO PF.n Pin Data Input/Output Register 0x0000_000X 



 NUC980 

May 2, 2019  Page 47 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

7 PERIPHERAL DMA CONTROLLER (PDMA) 

7.1 Overview 

The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer. 
The PDMA controller can transfer data from one address to another without CPU intervention. This 
has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications. 
The PDMA controller has a total of 10 channels and each channel can perform transfer between 
memory and peripherals or between memory and memory. 

7.2 Features 

 Supports 2 PDMA controller, PDMA0 and PDMA1 

 Supports 10 independently configurable channels 

 Supports selectable 2 level of priority (fixed priority or round-robin priority) 

 Supports transfer data width of 8, 16, and 32 bits 

 Supports source and destination address increment size can be byte, half-word, word or 
no increment 

 Supports software and UART, SPI, I2C and Timer request  

 Supports Scatter-Gather mode to perform sophisticated transfer through the use of the 
descriptor link list table 

 Supports single and burst transfer type 

 Supports time-out function 

 Supports stride function from channel 0 to channel 5 

 

7.3 Block Diagram 

AHB

PDMA Controller
Embedded SRAM

Ch0 DSCT

Ch9 DSCT

Peripheral

Descriptor Table

(DSCT)

ack
finish

Peripheral 

n

CH9 

Control

CH0 

Control

Master / Slave Wrapper

I/O, Decoder

Registers

Bus Master

Control

req

ack
finish

Peripheral 

0

req

ack
finish

Peripheral 

1

req

P
e

ri
p

h
e

ra
l 
In

te
rf

a
c
e

 

C
o

n
tr

o
l

 

Figure 7.3-1 PDMA Block Diagram 

  



 NUC980 

May 2, 2019  Page 48 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

7.4 Functional Description 

 Descriptor Functional Descriptions 

 Channel Priority 

The PDMA controller supports two level channel priorities including fixed and round-robin priority. The 
fixed priority channel has higher priority than round-robin priority channel. If multiple channels are set 
as fixed or round-robin priority, the higher channel will have higher priority. 

  



 NUC980 

May 2, 2019  Page 49 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

PDMA_PRISET Channel Number Priority Setting 
Arbitration Priority In Descending 

Order 

1 9 Channel9, Fixed Priority Highest 

1 8 Channel8, Fixed Priority --- 

--- --- --- --- 

1 0 Channel0, Fixed Priority --- 

0 9 Channel9, Round-Robin Priority --- 

0 8 Channel8, Round-Robin Priority --- 

--- --- --- --- 

0 0 Channel0, Round-Robin Priority Lowest 

Table 7.4-1 Descriptor Table Entry Structure 

 PDMA Operation Mode 

The PDMA controller supports two operation modes including Basic mode and Scatter-Gather mode. 

 Basic Mode 

Basic mode is used to perform one descriptor table transfer mode. This mode can be used to transfer 
data between memory and memory or peripherals and memory. PDMA controller operation mode can 
be set from OPMODE (PDMA_DSCTn_CTL[1:0], n denotes PDMA channel), the default setting is in 
idle state (OPMODE (PDMA_DSCTn_CTL[1:0]) = 0x0) and recommend user configure the descriptor 
table in idle state. If operation mode is not in idle state, user re-configure channel setting may make 
some operation error.  

User must fill the transfer count TXCNT (PDMA_DSCTn_CTL[31:16]) register and select transfer 
width TXWIDTH (PDMA_DSCTn_CTL[13:12]), destination address increment size DAINC 
(PDMA_DSCTn_CTL[11:10]), source address increment size SAINC (PDMA_DSCTn_CTL[9:8]), burst 
size BURSIZE (PDMA_DSCTn_CTL[6:4]) and transfer type TXTYPE (PDMA_DSCTn_CTL[2]), then 
the PDMA controller will perform transfer operation in transfer state after receiving request signal. 
Finishing this task will generate an interrupt to CPU if corresponding PDMA interrupt bit INTENn 
(PDMA_INTEN[9:0]) is enabled and the operation mode will be updated to idle state as shown in 
Figure 7.4-1. If software configures the operation mode to idle state, the PDMA controller will not 
perform any transfer and then clear this operation request. Finishing this task will also generate an 
interrupt to CPU if corresponding PDMA interrupt bit is enabled.  

 

Idle State

Transfer State

OPMODE (PDMA_DSCTn_CTL[1:0]) = 0x1

OPMODE (PDMA_DSCTn_CTL[1:0]) = 0x0

Transfer doneNext Request

 

Figure 7.4-1 Basic Mode Finite State Machine 



 NUC980 

May 2, 2019  Page 50 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Scatter-Gather Mode 

Scatter-Gather mode is a complex mode and can perform sophisticated transfer through the use of the 
description link list table as shown in Figure 7.4-2. Through operation mode user can perform 
peripheral wrapper-around, and multiple PDMA task can be used for data transfer between varied 
locations in system memory instead of a set of contiguous locations. Scatter-gather mode only needs 
a request to finish all table entries task till the last task with OPMODE (PDMA_DSCTn_CTL[1:0]) is 
idle state without ack. It also means scatter-gather mode can only be use to transfer data between 
memory to memory without handshaking.  

In Scatter-Gather mode, the table is just used for jumping to the next table entry. The first task will not 
perform any operation transfer. Finishing each task will generate an interrupt to CPU if corresponding 
PDMA interrupt bit is enabled and TBINTDIS (PDMA_DSCTn_CTL[7]) bit is “0” (when finishing task 
and TBINTDIS bit is “0”, corresponding TDIFn (PDMA_TDSTS[9:0]) flag will be asserted and if this bit 
is “1” TDIFn will not be active). 

If channel 9 has been triggered, and the operation mode is in Scatter-Gather mode (OPMODE 
(PDMA_DSCTn_CTL[1:0]) = 0x2), the hardware will load the real PDMA information task from the 
address generated by PDMA_DSCTn_NEXT (link address). For example, the current link address is 
0x02000_0100 (32bits without last two bits [1:0] valid in PDMA_DSCTn_NEXT), and then the next 
DSCT entry start address is 0x2000_0100. 

 

DSCT9

DSCT8

.

.

.

DSCT_CTL 01

32 bits 

without [1:0]

Memory space

Load the information to

the channel 9 descriptor table

Current DSCT Entry

Next DSCT Entry

DSCT1

DSCT0

DSCT_NEXT

DSCT_DA

DSCT_SA

DSCT_NEXT

DSCT_DA

DSCT_SA

DSCT_CTL

 

Figure 7.4-2 Descriptor Table Link List Structure 

The above link list table operation is DSCT state in Scatter-Gather Mode as shown in Figure 6.7 5. 
When loading the information is finished, it will go to transfer state and start transfer by this information 
automatically. However, if the next PDMA information is also in the Scatter-Gather mode, the 
hardware will catch the next PDMA information block when the current task is finished. The Scatter-
Gather mode switches to basic mode when doing the next task. Then, the basic mode switches to Idle 
state when the last task is finished. 



 NUC980 

May 2, 2019  Page 51 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Idle State

Transfer State

DSCT State

OPMODE (PDMA_DSCTn_CTL[1:0])=0x1

OPMODE (PDMA_DSCTn_CTL[1:0])=0x0

OPMODE (PDMA_DSCTn_CTL[1:0])=0x2

Transfer done

AHB ready

Next Entry
OPMODE 

(PDMA_DSCTn_CTL[1:0])=0x0

 

Figure 7.4-3 Scatter-Gather Mode Finite State Machine 

 Transfer Type 

The PDMA controller supports two transfer types: single transfer type and burst transfer type, 
configure by setting TXTYPE (PDMA_DSCTn_CTL[2]).  

When the PDMA controller is operated in single transfer type, each transfer data needs one request 
signal for one transfer, after transferred data, TXCNT (PDMA_DSCTn_CTL[31:16]) will decrease 1. 
Transfer will be finished after the TXCNT (PDMA_DSCTn_CTL[31:16]) decreases to 0. In this mode, 
the BURSIZE (PDMA_DSCTn_CTL[6:4]) is not useful to control the transfer size. The BURSIZE 
(PDMA_DSCTn_CTL[6:4]) will be fixed as one. 

For the burst transfer type, the PDMA controller transfers TXCNT (PDMA_DSCTn_CTL[31:16]) of data 
and need only one request signal. After transferred BURSIZE (PDMA_DSCTn_CTL[6:4]) of data, 
TXCNT (PDMA_DSCTn_CTL[31:16]) will decrease BURSIZE number. Transfer will be done after the 
transfer count TXCNT (PDMA_DSCTn_CTL[31:16]) decreases to 0. Note that burst transfer type can 
only be used for PDMA controller to do burst transfer between memory and memory. User must use 
single request type for memory-to-peripheral and peripheral-to-memory transfers. Please note that, 
PDMA transfer data between Flash and memory should finish before MCU enter idle mode or power 
done mode to prevent access wrong data. 

Figure 6.7 6 shows an example about single and burst transfer type in basic mode. In this example, 
channel 1 uses single transfer type and TXCNT (PDMA_DSCTn_CTL[31:16]) = 127. Channel 0 uses 
burst transfer type, BURSIZE (PDMA_DSCTn_CTL[6:4]) = 128 and TXCNT 
(PDMA_DSCTn_CTL[31:16]) = 255. The operation sequence is described below: 

1. Channel 0 and channel 1 get the trigger signal at the same time.  

2. Channel 1 has higher priority than channel 0 by default; the PDMA controller will load the 
channel 1 descriptor table first and executing. But channel 1 is single transfer type, and thus 
the PDMA controller will only transfer one transfer data. 

3. Then, the PDMA controller turns to the channel 0 and loads channel 0’s descriptor table. The 
channel 0 is burst transfer type and the burst size selected to 128. Therefore, the PDMA 
controller will transfer 128 transfer data. 

4. When channel 0 transfers 128 data, channel 1 gets another request signal, then after channel 
0 finishes 128 transfer data, the PDMA controller will turn to channel 1 and transfer next one 
data. 

5. After channel 1 transfers data, the PDMA controller switches to low priority channel 0 to 
continuous next 128 data transfer. If no channel 1 request receives, PDMA will start next 



 NUC980 

May 2, 2019  Page 52 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

channel 0, 128 data transfer. 

6. The PDMA controller will complete transfer when channel 0 finishes data transfer 256 times, 
and channel 1 finishes transferring 128 times. 

Channel 1 Channel 0 Channel 1 Channel 0

CH1 Request

CH0 Request

Transferred

1 byte data

Transferred

128 words data

Transferred

1 byte data

Transferred

128 words data

CH1 CH0

127 255
TXCNT 

(PDMA_DSCTn_CTL[31:16])

0

(1 byte)

2

(1 word)

BURSIZE

(PDMA_DSCTn_CTL[6:4])

Execution 

Channel

BURSIZE

(PDMA_DSCTn_CTL[6:4])
Non-useful

0

(128 transfers)

1

(Single Transfer)

0

(Burst Transfer)

TXTYPE

(PDMA_DSCTn_CTL[2])

 

Figure 7.4-4 Example of Single Transfer Type and Burst Transfer Type in Basic Mode 

 Channel Time-out 

When the transfer channel is enabled and selected to the peripheral, corresponding 
channel time-out TOUTENn (PDMA_TOUTEN [n], n=0,1..9) is enabled, then 
channel’s corresponding time-out counter will start count up from 0 while the channel 
has received trigger signal from the peripheral.  

The time-out counter is based on output of HCLK prescaler, which is setting by 
corresponding channel’s TOUTPSCn (PDMA_TOUTPSC [2+4n:4n], n=0,1..9). If 
time-out counter counts up from 0 to corresponding channel’s TOCn 
(PDMA_TOC0_1 [16(n+1)-1):16n], n=0,1..9), the PDMA controller will generate 
interrupt signal when corresponding TOUTIENn (PDMA_TOUTIEN [n], n=0,1..9) is 
enabled. When time-out occurred, corresponding channel’s REQTOFn 
(PDMA_INTSTS [n+8], n=0,1..9) will be set to indicate channel time-out is happened. 

Time-out counter resets to 0 while counter count to TOCn (PDMA_TOC0_1 [16(n+1)-
1:16n], n=0,1..9), received trigger signal, time-out function is disabled or chip enters 
Power-down mode. 

Figure 7.4-5 shows an example about time-out counter operation. The operation 
sequence is described below:  

1. The channel 0 time-out counter is not counting when time-out function is enabled by setting 
TOUTEN0(PDMA_TOUTEN[0]) bit to 1. 

2. Time-out counter starts counting from 0 to the value of TOC0(PDMA_TOC0_1[15:0]) bits 
when receiving the first peripheral request. 



 NUC980 

May 2, 2019  Page 53 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Time-out counter is reset to 0 by received second peripheral request. 

4. Channel 0 request time-out flag(REQTOF0(PDMA_INTSTS[8])) is set to high when time-out 
counter counts to 5. The counter will keep counting from 0 to 5, and user can clear REQTOF0 
flag and then poll REQTOF0 flag to check the next time-out occurred. 

5. Time-out counter is reset to 0 when time-out function is disabled. 

Time-out counter

TOC0

(PDMA_TOC0_1[15:0])

TOUTEN0

(PDMA_TOUTEN[0])

1 2 3 4 5 0 1 2 3 0

5

0 1 2 3 0x

Peripheral request

REQTOF0

(PDMA_INTSTS[8])

Time-out clock

(HCLK/2^8)

TOUTPSC0

(PDMA_TOUTPSC[2:0]) 0

 

Figure 7.4-5 Example of PDMA Channel 0 Time-out Counter Operation 

 

 Stride Function 

The PDMA supports channel 0 to channel 5 six channels with stride function. The stride function can 
transfer data from one address to another address and support block transfer with stride. When 
operating with stride function, the transfer address can be fixed or incremented successively. 

Set STRIDEEN (PDMA_DSCTn_CTL[15]) to enable the stride function, and then write a valid source 
address to the PDMA_DSCTn_SA register and a source address offset count to SASOL 
(PDMA_ASOCRn[15:0]) register, a destination address to the PDMA_DSCTn_DA register and a 
destination address offset count to DASOL (PDMA_ASOCRn[31:16]), and a transfer count to the 
TXCNT (PDMA_DSCTn_CTL) register and a stride transfer count to STC (PDMA_STCn[15:0]). Next, 
trigger the SWREQn (PDMA_SWREQ[5:0]). The PDMA will start and then stop the transfer after 
TXCNT (PDMA_DSCTn_CTL) counts down to 0. Figure 7.4-6 shows the block transfer relationship 
between source memory and destination memory. The stride function also supports peripheral to 
memory or memory to peripheral transfer. 

 



 NUC980 

May 2, 2019  Page 54 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Source Memory Destination Memory

STC STC
SASOL DASOL

 

Figure 7.4-6 Stride Function Block Transfer 

  



 NUC980 

May 2, 2019  Page 55 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

7.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

PDMA Base Address:  

PDMAx_BA = 0xB000_8000 + ( 0x1000*x ) 

x=0, 1 

DSCT_CTL_BA = PDMAx_BA 

DSCT_SA_BA = PDMAx_BA+4 

DSCT_DA_BA = PDMAx_BA+8 

DSCT_NEXT_BA = PDMAx_BA+c 

CURSCAT_BA = PDMAx_BA+80 

PDMAx_DSCTn_CTL 

n = 0,1..9 

DSCT_CTL_BA + 0x10 * 
n 

R/W Descriptor Table Control Register of PDMA Channel n 0xXXXX_XXXX 

PDMAx_DSCTn_SA 

n = 0,1..9 

DSCT_SA_BA + 0x10 * 
n  

R/W Source Address Register of PDMA Channel n 0xXXXX_XXXX 

PDMAx_DSCTn_DA 

n = 0,1..9 

DSCT_DA_BA + 0x10 * 
n 

R/W Destination Address Register of PDMA Channel n 0xXXXX_XXXX 

PDMAx_DSCTn_NEXT 

n = 0,1..9 

DSCT_NEXT_BA + 0x10 
* n 

R/W 
Next Scatter-Gather Descriptor Table Offset Address 
of PDMA Channel n 

0xXXXX_XXXX 

PDMAx_CURSCATn 

n = 0,1..9 

CURSCAT_BA + 0x004 
* n 

R 
Current Scatter-Gather Descriptor Table Address of 
PDMA Channel n 

0xXXXX_XXXX 

PDMAx_CHCTL PDMAx_BA + 0x400 R/W PDMA Channel Control Register 0x0000_0000 

PDMAx_PAUSE PDMAx_BA + 0x404 W PDMA Transfer Pause Control Register 0x0000_0000 

PDMAx_SWREQ PDMAx_BA + 0x408 W PDMA Software Request Register 0x0000_0000 

PDMAx_TRGSTS PDMAx_BA + 0x40C R PDMA Channel Request Status Register 0x0000_0000 

PDMAx_PRISET PDMAx_BA + 0x410 R/W PDMA Fixed Priority Setting Register 0x0000_0000 

PDMAx_PRICLR PDMAx_BA + 0x414 W PDMA Fixed Priority Clear Register 0x0000_0000 

PDMAx_INTEN PDMAx_BA + 0x418 R/W PDMA Interrupt Enable Register 0x0000_0000 

PDMAx_INTSTS PDMAx_BA + 0x41C R/W PDMA Interrupt Status Register 0x0000_0000 

PDMAx_ABTSTS PDMAx_BA + 0x420 R/W PDMA Channel Read/Write Target Abort Flag Register 0x0000_0000 

PDMAx_TDSTS PDMAx_BA + 0x424 R/W PDMA Channel Transfer Done Flag Register 0x0000_0000 

PDMAx_ALIGN PDMAx_BA + 0x428 R/W PDMA Transfer Alignment Status Register 0x0000_0000 

PDMAx_TACTSTS PDMAx_BA + 0x42C R PDMA Transfer Active Flag Register 0x0000_0000 

PDMAx_TOUTPSC PDMAx_BA + 0x430 R/W PDMA Time-out Prescaler Register 0x0000_0000 

PDMAx_TOUTEN PDMAx_BA + 0x434 R/W PDMA Time-out Enable Register 0x0000_0000 

PDMAx_TOUTIEN PDMAx_BA + 0x438 R/W PDMA Time-out Interrupt Enable Register  0x0000_0000 

PDMAx_SCATBA PDMAx_BA + 0x43C R/W 
PDMA Scatter-Gather Descriptor Table Base Address 
Register 

0x2000_0000 

PDMAx_TOC0_1 PDMAx_BA + 0x440 R/W PDMA Time-out Counter Ch1 and Ch0 Register  0x0000_0000 



 NUC980 

May 2, 2019  Page 56 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

PDMAx_CHRST PDMAx_BA + 0x460 R/W PDMA Channel Reset Register 0x0000_0000 

PDMAx_REQSEL0_3 PDMAx_BA + 0x480 R/W PDMA Request Source Select Register 0 0x0000_0000 

PDMAx_REQSEL4_7 PDMAx_BA + 0x484 R/W PDMA Request Source Select Register 1 0x0000_0000 

PDMAx_REQSEL8_11 PDMAx_BA + 0x488 R/W PDMA Request Source Select Register 2 0x0000_0000 

PDMAx_STCR0 PDMAx_BA + 0x500 R/W Stride Transfer Count Register of PDMA Channel 0 0x0000_0000 

PDMAx_ASOCR0 PDMAx_BA + 0x504 R/W Address Stride Offset Register of PDMA Channel 0 0x0000_0000 

PDMAx_STCR1 PDMAx_BA + 0x508 R/W Stride Transfer Count Register of PDMA Channel 1 0x0000_0000 

PDMAx_ASOCR1 PDMAx_BA + 0x50C R/W Address Stride Offset Register of PDMA Channel 1 0x0000_0000 

PDMAx_STCR2 PDMAx_BA + 0x510 R/W Stride Transfer Count Register of PDMA Channel 2 0x0000_0000 

PDMAx_ASOCR2 PDMAx_BA + 0x514 R/W Address Stride Offset Register of PDMA Channel 2 0x0000_0000 

PDMAx_STCR3 PDMAx_BA + 0x518 R/W Stride Transfer Count Register of PDMA Channel 3 0x0000_0000 

PDMAx_ASOCR3 PDMAx_BA + 0x51C R/W Address Stride Offset Register of PDMA Channel 3 0x0000_0000 

PDMAx_STCR4 PDMAx_BA + 0x520 R/W Stride Transfer Count Register of PDMA Channel 4 0x0000_0000 

PDMAx_ASOCR4 PDMAx_BA + 0x524 R/W Address Stride Offset Register of PDMA Channel 4 0x0000_0000 

PDMAx_STCR5 PDMAx_BA + 0x528 R/W Stride Transfer Count Register of PDMA Channel 5 0x0000_0000 

PDMAx_ASOCR5 PDMAx_BA + 0x52C R/W Address Stride Offset Register of PDMA Channel 5 0x0000_0000 



 NUC980 

May 2, 2019  Page 57 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

8 TIMER CONTROLLER (TMR) 

8.1 Overview 

The timer controller includes four 32-bit timers, Timer0 ~ Timer5, allowing user to easily implement a 
timer control applications. The timer can perform functions, such as frequency measurement, delay 
timing, clock generation, and event counting by external input pins, and interval measurement by 
external capture pins. 

 

8.2 Features 

 Independent Clock Enable Control for each Timer (TMRx, x= 0~5)  

 Time-out period = (Period of TMRx clock input) * (8-bit pre-scale counter + 1) * (24-bit 
CMP)  

 Counting cycle time = (1 / TMRx_CLK) * (28) * (224) 

 Internal 8-bit pre-scale counter  

 Internal 24-bit up counter is readable through CNT (TMRx_CNT[23:0])  

 Provides one-shot, periodic, toggle-output and continuous counting operation modes 

 Supports external pin capture for interval measurement  

 Supports external pin capture for timer counter reset  

 24-bit capture value is readable through CAPDAT (TMRx _CAP[23:0]) 

 Supports event counting function to count input event from pin TMx_CNT (x = 0~5) 

 Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is 
generated 

 Supports time-out interrupt or capture interrupt to trigger PDMA. 

 Supports Inter-Timer trigger that Timer 0 can trigger Timer 1, Timer 2 can trigger Timer 3 
and Timer 4 can trigger Timer 5  

  



 NUC980 

May 2, 2019  Page 58 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

8.3 Block Diagram 

0

1

CNTPHASE
(TIMERx_CTL[13])

Tx

EXTCNTEN
(TIMERx_CTL[12])

0

1

CNTEN
(TIMERx_CTL[0])

8-bit
Prescale

“1”

TMRx_CLK

24-bit
Up-Counter

00

01

10

11

CAPEDGE
(TIMERx_CTL[19:18])

Tx_EXT

CAPEN
(TIMERx_CTL[16])

0

1

CAPCNTMD
(TIMERx_CTL[20])

CAPFUNCS
(TIMERx_CTL[17])

TIMERx_CAP

Reset 
Counter

TIMERx_CMP

-
=

+
Q

Q
SET

CLR

D

Toggle

0

1
0

1

“0”

OPMODE
(TIMERx_CTL[5:4]) =“10”

TMx_OUT

Q

Q
SET

CLR

D

CNTIF
(TIMERx_

INTSTS[0])

CNTIEN
(TIMERx_INTEN[0])

Q

Q
SET

CLR

D

CAPIF
(TIMERx_

INTSTS[1])

CAPIEN
(TIMERx_INTEN[1])

TMR_INT

8-bit
Event Drop Counter

0

1-1

-
=

+

“0”INTRTGMD
(TIMERx_CTL[25])

INTRTGEN
(TIMERx_CTL[24])

0

1

Reset

Set

INTR_TMR_TRG

TIMERx_CNT

+1 +1

Timer 0, Timer 2, and Timer4

0

1

0

1

 

Figure 8.3-1 Timer Controller Block Diagram 

  



 NUC980 

May 2, 2019  Page 59 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

8.4 Functional Description 

Enhanced timer supports one-shot, periodic, toggle out, and continuous operation mode. And it also 
supports external capture functions to measure input signal frequency or reset counter. 

 Timer Initialization 

Below list the procedure to initialize timer counter and start counting: 

1. Stop timer counting by clear CNTEN (TMRx_CTL[0]) to 0. 

2. Configure OPMODE (TMRx_CTL [5: 4]) to set operating mode. 

3. Set CNTIEN (TMRx_INTEN [0]) to 1 for enable interrupt, otherwise clear to 0. 

4. Set prescaler in PSC (TMRx_PRECNT [7: 0]). 

5. Set timer compare value in CMPDAT (TMRx_CMP [24:0]). 

6. Set CNTEN (TMRx_CTL[0]) 1 to enable timer counting. 

 

 Timer Capture Initialization 

Below list the procedure to initialize timer capture mode: 

1. Stop timer by clear both CNTEN (TMRx_CTL[0]) and CAPEN (TMRx_CTL [16]) to 0. 

2. Configure OPMODE (TMRx_CTL [5: 4]) to set operating mode. 

3. Set CAPIEN (TMRx_INTEN [1]) 1 to enable capture interrupt, otherwise clear to 0. 

4. Set CAPCNTMD (TMRx_CTL [20]) and CAPFUNCS (TMRx_CTL [17]) to select the capture 
mode. 

5. Configure CAPEDGE (TMRx_CTL [19:18]) to select capture trigger condition. 

6. To enable capture debounce, set CAPDBEN (TMRx_CTL [22]) to 1, Otherwise clear to 0. 

7. Set prescaler in PSC (TMRx_PRECNT [7: 0]). 

8. Set timer compare value in CMPDAT (TMRx_CMP [24:0]) 

9. Set CAPEN (TMRx_CTL [16]) 1 to enable capture mode. 

10. Set CNTEN (TMRx_CTL[0]) 1 to enable counter. 

Note: OPMODE setting is ignored in trigger counting mode. This setting only affect timer operating 
mode in free counting mode and counter reset mode. 

 INTERRUPT HANDLING 

Every timer has individual interrupt source and interrupt could be ether timeout interrupt or capture 
interrupt. While timeout interrupt triggers, CNTIF (TMRx_INTSTS[0]) will be set 1. While capture 
interrupt triggers, CAPIF (TMRx_INTSTS[1]) will be set 1. These two bits could be cleared by write 1 
to them. 

If new capture event occurs before CAPIF cleared in capture mode, CAPDATOF (TMRx_INTSTS[5]) 
will be set 1. This bit will be cleared after when CAPIF cleared. 

 TIEMR FREQUENCY 

Formular below can be used to calculate timer timeout frequency: 



 NUC980 

May 2, 2019  Page 60 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Frequency = TMRx_CLK / ((PRESCALE + 1) * CMP) 

Where TMRx_CLK is timer clock source frequency. Could be HXT (12 MHz external frequency), 
PCLK, PCLK/4096, or LXT (32.768 kHz external crystal). PRESCALE prescaler defined in PRECNT 
(TMRx_PRECNT[7:0]), TCMP timer compare value defined in CMPDAT (TMRx_CMP[24:0]). 
Following table shows some example of timer setting to generate 1Hz, 10Hz, 100Hz, and 1000Hz 
frequency. 

Timer 
Frequency 

Timer Clock 
Source 

PRECNT (TMRx_PRECNT[7:0]) TMR_CMP (TMRx_CMP[24:0]) 

1Hz LXT 0 0x8000 

10Hz HXT 0 0x124F80 

10Hz HXT 9 0x1D4C0 

100Hz HXT 9 0x2EE0 

100Hz HXT 19 0x1770 

1000Hz PCLK (75 MHz) 4 0x3A98 

1000Hz HXT 9 0x4B0 

Table 8.4-1 Timer Frequency Setting Example 

 ONE-SHOT MODE 

If the timer is operated in One-shot mode (TMRx_CTL[5:4] is 00) and CNTEN (TMRx_CTL[0] timer 
counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value 
(TMRx_CNT value) reaches timer compare register (TMRx_CMP) value, the CNTIF 
(TMRx_INTSTS[0] timer interrupt status) will set to 1. If CNTIEN (TMRx_INTEN[0] timer interrupt 
enable bit) is set to 1 then the interrupt signal is generated and sent to AIC to inform CPU for 
indicating that the timer counting overflow happens. If CNTIEN (TMRx_INTEN[0] timer interrupt enable 
bit) is set to 0, no interrupt signal is generated.  

In this operating mode, once the timer counter value (TMRx_CNT value) reaches timer compare 
register (TMRx_CMP) value, CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1, timer 
counting operation stops and the timer counter value (TMRx_CNT value) goes back to counting initial 
value then CNTEN (TMRx_CTL[0] timer counter enable bit) is cleared to 0 by timer controller 
automatically. That is to say, timer operates timer counting and compares with TMRx_CMP value 
function only one time after programming the timer compare register (TMRx_CMP) value and CNTEN 
(TMRx_CTL[0] timer counter enable bit) is set to 1. So, this operating mode is called One-Shot mode. 

 PERIODIC MODE 

If the timer is operated in Periodic mode (TMRx_CTL[5:4] is 01) and TMR_EN (TMRx_CTL[0] timer 
counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value 
(TMRx_CNT value) reaches timer compare register (TMRx_CMP) value, the CNTIF 
(TMRx_INTSTS[0] timer interrupt status) will set to 1. If CNTIEN (TMRx_INTEN[0] timer interrupt 
enable bit) is set to 1 then the interrupt signal is generated and sent to AIC to inform CPU for 



 NUC980 

May 2, 2019  Page 61 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

indicating that the timer counting overflow happens. If CNTIEN (TMRx_INTEN[0] timer interrupt enable 
bit) is set to 0, no interrupt signal is generated.  

In this operating mode, once the timer counter value (TMRx_CNT value) reaches timer compare 
register (TMRx_CMP) value, CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1, the timer 
counter value (TMRx_CNT value) goes back to counting initial value and TMR_EN (TMRx_CTL[0] 
timer counter enable bit) is kept at 1 (counting enable continuously) and timer counter operates up 
counting again. If CNTIF (TMRx_INTSTS[0] timer interrupt status) is cleared by software, once the 
timer counter value (TMRx_CNT value) reaches timer compare register (TMRx_CMP) value again, 
CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1 also. That is to say, timer operates timer 
counting and compares with TMRx_CMP value function periodically. The timer counting operation 
does not stop until the TMR_EN (TMRx_CTL[0] timer counter enable bit) is set to 0. The interrupt 
signal is also generated periodically. So, this operating mode is called Periodic mode. 

 TOGGLE MODE 

If the timer is operated in Toggle mode (TMRx_CTL[5:4] is 10) and TMR_EN (TMRx_CTL[0] timer 
counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value 
(TMRx_CNT value) reaches timer compare register (TMRx_CMP) value, the CNTIF 
(TMRx_INTSTS[0] timer interrupt status) will set to 1. If CNTIEN (TMRx_INTEN[0] timer interrupt 
enable bit) is set to 1 then the interrupt signal is generated and sent to AIC to inform CPU for 
indicating that the timer counting overflow happens. If CNTIEN (TMRx_INTEN[0] timer interrupt enable 
bit) is set to 0, no interrupt signal is generated.  

In this operating mode, once the timer counter value (TMRx_CNT value) reaches timer compare 
register (TMRx_CMP) value, CNTIF (TMRx_INTSTS[0] timer interrupt status) and toggle out signal will 
set to 1, the timer counter value (TMRx_CNT value) goes back to counting initial value and TMR_EN 
(TMRx_CTL[0] timer counter enable bit) is still kept at 1 (counting enable continuously), and timer 
counter operates up counting again. When the timer counter value (TMRx_CNT value) reaches timer 
compare register value again, toggle out signal is set to 0, and CNTIF (TMRx_INTSTS[0] timer 
interrupt status) will set to 1 also. The timer counting operation does not stop until the TMR_EN 
(TMRx_CTL[0] timer counter enable bit) is set to 0. Thus, the toggle output signal changes back and 
forth with 50% duty cycle. So, this operating mode is called Toggle mode. 

 CONTINUOUS MODE 

If the timer is operated in Continuous Counting mode (MODE_SEL[1:0] is 11) and TMR_EN 
(TMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting. Once the 
timer counter value (TMRx_CNT value) reaches timer compare register (TMRx_CMP) value, the 
CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1. If CNTIEN (TMRx_INTEN[0] timer 
counter enable bit) is set to 1 then the interrupt signal is generated and sent to AIC to inform CPU for 
indicating that the timer counting overflow happens. If CNTIEN (TMRx_INTEN[0] timer counter enable 
bit) is set to 0, no interrupt signal is generated.  

In this operating mode, once the timer counter value (TMRx_CNT value) reaches timer compare 
register (TMRx_CMP) value, CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1 and 
TMR_EN (TMRx_CTL[0] timer counter enable bit) is kept at 1 (counting enable continuously) and 
timer counter continuous counting without reload the timer counter value (TMRx_CNT value) to 
counting initial value. User can change different timer compare register (TMRx_CMP) value 
immediately without disabling timer counter and restarting timer counter counting. 

For example, the timer compare register (TMRx_CMP) value is set as 80, first. (The timer compare 
register (TMRx_CMP) should be less than 224 and be greater than 1). Once the timer counter value 
(TMRx_CNT value) reaches to 80, CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1 and 
TMR_EN (TMRx_CTL[0] timer counter enable bit) is still kept at 1 (counting enable continuously). 
Next, user clears the CNTIF (TMRx_INTSTS[0] timer interrupt status) and reprograms timer compare 
register (TMRx_CMP) value as 200, then CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1 
again when timer counter value (TMRx_CNT value) reaches to 200. At last, user clears CNTIF 



 NUC980 

May 2, 2019  Page 62 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

(TMRx_INTSTS[0] timer interrupt status) and reprograms timer compare register (TMRx_CMP) value 
as 500, then CNTIF (TMRx_INTSTS[0] timer interrupt status) will set to 1 again when timer counter 
value (TMRx_CNT value) reaches to 500. In this mode, when the timer counter value (TMRx_CNT 
value) continues counting up to 224 -1, then recount up from 0 continuously. The timer counter value 
(TMRx_CNT value) is always keeping up counting even if CNTIF (TMRx_INTSTS[0] timer interrupt 
status) is 1. Therefore, this operation mode is called as Continuous Counting mode. 

Following figure shows an enhanced timer continuous mode sample. 

ETMRx_D

R = 0

Set

ETMRx_CMP

R = 80

ETMRx_DR = 80 

and ETMR_IS = 1

Clear ETMR_IS  

as 0 and Set

ETMRx_CMPR

 = 200

ETMRx_DR from 2
24 

-1 to 0

ETMRx_DR 

= 100

ETMRx_DR 

= 200

ETMRx_DR 

= 300

ETMRx_DR 

= 400

ETMRx_DR 

= 500

ETMRx_DR 

= 2
24  

-1 
  

ETMRx_DR = 200 

and ETMR_IS = 1

Clear ETMR_IS 

as 0 and Set

ETMRx_CMPR

 = 500

ETMRx_DR = 500 

and ETMR_IS = 1

Clear ETMR_IS  

as 0 and Set

ETMRx_CMPR

 = 80

 

Figure 8.4-1 Timer Continuous Mode Operation 

 Event Counting Mode 

The timer controller also provides an application which can count the input event from TMx_CNT 

(x= 0~5) pin and the number of event will reflect to CNT (TMRx _CNT[23:0]) value. It is also alled as 
event counting function. In this function, EXTCNTEN (TMRx_CTL[12]) should be set and the timer 
peripheral clock source should be set as HCLK User can enable or disable TMx_CNT pin de-bounce 
circuit by setting CNTDBEN(TMRx_CTL[14]). The input event frequency should be less than 1/6HCLK 
if TMx_CNT pin debounce disabled, or less than 1/16HCLK if TMx_CNT pin de-bounce enabled to 
assure the returned CNT (TMRx_CNT[23:0]) value is correct, and user can also select edge detection 
phase of TMx_CNT pin by setting CNTPHASE (TMRx_CTL[13]) bit. In event counting mode, the timer 
counting operation mode can be selected as One-shot, Periodic, Toggle-output and Continuous 
Counting mode to counts the counter value CNT (TMRx_CNT[23:0]) for TMx_CNT pin. 

 FREE COUNTING MODE 

In this mode, timer monitors the capture pin toggle event to save current counter value. If both 
CAPFUNCS (TMRx_CTL[17]) and CAPCNTMD (TMRX_CTL[20]) is 0, timer is working in free 
counting mode. 24 up counter keeps counting, when the external pin toggle state matches the setting 
in CAPEDGE (TMRX_CTL[19:18]), current 24 up counter value will be stored in TMRx_CAP register. 
At the mean time, if CAPIEN (TMRx_INTEN[1]) is 1, CAPIF(TMRX_INTSTS [1]) will set 1 and trigger 
interrupt. 

In free counting mode, when CAPEDGE is 0, falling edge on TMx_CAP triggers capture event. When 
CAPEDGE is 1, rising edge on TMx_CAP triggers capture event. And both falling and rising edge 
trigger capture event if CAPEDGE is ether 2 or 3, TMx_CAP. Following figure is timing diagram of free 
counting mode. 



 NUC980 

May 2, 2019  Page 63 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5 6 7 8 9 10 11 12 13 14 15

XX 6 10 13

ETMR Counter

TCAP_IS

ETMRx_TCAP

NCAP_DET_STS

TMx_CAP
(TCAP_EDGE=0x03)

Clear by software Clear by software

 

Figure 8.4-2 Timer Free Counting Mode 

 TRIGGER COUNTING MODE 

In this mode, timer monitors the capture pin toggle event to start/stop timer counter and save captured 
value. If CAPFUNCS (TMRx_CTL[17]) is 0 and CAPCNTMD (TMRX_CTL[20])) is 1, counter will work 
in trigger counting mode. 24 up counting counter will keep 0. Until external capture pin toggle state 
matches CAPEDGE (TMRx_CTL[19:18]) first trigger condition, 24 counter starts counting. And timer 
counter stops counting and store current counter value to TMRx_CAP register. When the external 
capture pin toggle state matches the second trigger condition set in CAPEDGE. If CAPIEN 
(TMRx_INTEN[1]) is 1, CAPIF(TMRx_INTSTS [1]) will be set 1 and triggers interrupt. 

In trigger counting mode, if CAPEDGE is 0, first falling edge on TMx_CAP starts timer up counting, 
second falling edge stops timer counter. If CAPEDGE is 1, first rising edge on TMx_CAP starts timer 
up counting, second rising edge stops timer counter. If CAPEDGE is 2, falling edge on TMx_CAP 
starts timer counter, and rising edge stops counter. If CAPEDGE is 3, rising edge on TMx_CAP starts 
timer counter, and falling edge stops counter. 

 

Figure 8.4-3 Timer Trigger Counting Mode 

 COUNTER RESET MODE 

In this mode, timer monitors the capture pin toggle event to reset timer counter. The timer value before 
reset will not be saved. 

External capture toggle pin will be used to reset timer counter if CAPFUNCS (TMRx_CTL[17]) is 1. In 



 NUC980 

May 2, 2019  Page 64 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

this mode, while external capture pin toggle status matches the setting in CAPEDGE 
(TMRx_CTL[19:18]), timer counter will be reset an keep up counting. If CAPIEN (TMRx_INTEN[1]) is 
1, CAPIF(TMRx_INTSTS [1]) will be set 1 and trigger interrupt. 

In counter reset mode, if CAPEDGE is 0, falling edge on TMx_CAP pin will reset timer counter. Rising 
edge on TMx_CAP reset counter if CAPEDGE is 1, TMx_CAP. Both rising and falling edge reset timer 
counter if CAPEDGE if 2 or 3, TMx_CAP. Following figure illustrate the reset timer mode operation. 

5 6 0 1 2 0 1 2 3 0 1ETMR Counter

TCAP_IS

TMx_CAP
(TCAP_EDGE=0x03)

Clear by software
Clear by software Clear by software

 

Figure 8.4-4 Timer Counter Reset Mode 

 CAPTURE DEBOUNCE 

Timer capture supports debounce function for detecting capture pin toggle. Timer can use ether 
original signal or debounced signal to detect capture pin status. Default state of debounce circuit is 
disabled. And only will be enabled if both CAPDBEN (TMRx_CTL[22]) and CAPEN (TMRx_CTL[16]) 
are set 1. So if capture pin level is 1, and CAPEDGE (TMRx_CTL[19:18]) configured to detect rising 
level and debounce circuit enabled, a false rising event will be detected. This will means the value in 
TMRx_CAP is incorrect on first capture interrupt. To avoid using this wrong value for frequency 
calculation, it is recommended to ignore first capture data that maybe incorrect capture value. 

 Inter-Timer Trigger Mode 

The timer controller provides inter-timer trigger function to measure input frequency precisely. In inter-
timer trigger function, TMR0 can trigger TMR1, TMR2 can trigger TMR3, and TMR4 can trigger TMR5. 

If TMR0 and TMR1 are configured in Inter-timer trigger mode (INTRTGEN (TMR0_CTL[24]) is 1), 
TMR0 is operating at event counting mode to count the input event from T0 pin and generate an 
internal signal (INTR_TMR_TRG) to Timer1. Timer0 transit internal signal INTR_TMR_TRG from low 
to high if 1st input event detected on T0 pin and then transit internal signal INTR_TMR_TRG from high 
to low if CNT (TMR0_CNT[23:0]) value reaches CMPDAT (TMRx_CMP[23:0]) value. Timer1 is 
operating at external capture trigger-counting mode to starts the timer counter up counting if rising 
edge transition on INTR_TMR_TRG detected and load CNT (TMR1_CNT[23:0]) value to CAPDAT 
(TMR1_CAP[23:0]) if falling edge transition on INTR_TMR_TRG detected. 

If INTRTGEN (TMR2_CTL[24]) is set to 1, TMR2 and TMR3 are configured in Inter-timer Trigger 
mode. The operation behavior of TMR2 and TMR3 in inter-timer trigger function is the same as the 
operation behavior of TMR0 and TMR1. The inter-timer trigger settings for TMR4 and TMR5 are the 
same. 

The following figure describes how inter-timer trigger function operated with TMR0 and TMR1.In the 
end of inter-timer trigger function, the CNTIF (TMR0_INTSTS[0]) will set to 1 and INTRTGEN 
(TMR0_CTL[24]) is cleared automatically. In the meantime, if the CNTIEN (TMR0_INTEN[0]) bit is set 
to 1, the timer interrupt signal is generated and sent to NVIC to inform CPU as well. 

By using Inter-timer trigger function, the frequency of input event from T0 pin could be measured more 
precisely.In following figure when TMR0 counts 100 input events, the counter of TMR1 counts to 999. 
If TMR1’s clock frequency is 10 MHz, then we know the time for 100 events is 99900ns. Therefore, the 
period of an input event is 999ns and the frequency of input event will be 1.001 MHz. 



 NUC980 

May 2, 2019  Page 65 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

TMx_CNT

TMRx_CTL.
INTR_TRG_EN

TMRx_CTL.
EVENT_EN

TMRx_Counter 0 1 2 3 99 100

INTR_TMR_TRG

TMRx_CMPR 100

0

TMRx+1_Counter 0 1 2 998 999

TMRx+1_TCAP 999

TMRx_ISR.
TMR_IS

 

Figure 8.4-5 Inter-Timer Trigger Mode 

 

  



 NUC980 

May 2, 2019  Page 66 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

8.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

TMR Base Address: 

TMR0_BA = 0xB005_0000 

TMR1_BA = 0xB005_0100 

TMR2_BA = 0xB005_1000 

TMR3_BA = 0xB005_1100 

TMR4_BA = 0xB005_2000 

TMR5_BA = 0xB005_2100 

TMRn_CTL 

n = 0,1,2,3,4,5 
TMRn_BA+0x000 R/W Enhance Timer n Control and Status Register 0x0000_0000 

TMRn _PRECNT 

n = 0,1,2,3,4,5 
TMRn_BA+0x004 R/W Enhance Timer n Pre-Scale Counter Register 0x0000_0000 

TMRn _CMP 

n = 0,1,2,3,4,5 
TMRn_BA+0x008 R/W Enhance Timer n Compare Register 0x0000_0000 

TMRn _INTEN 

n = 0,1,2,3,4,5 
TMRn_BA+0x00C R/W Enhance Timer n Interrupt Enable Register 0x0000_0000 

TMRn _INTSTS 

n = 0,1,2,3,4,5 
TMRn_BA +0x010 R/W Enhance Timer n Interrupt Status Register 0x0000_0000 

TMRn _CNT 

n = 0,1,2,3,4,5 
TMRn_BA+0x014 R/W Enhance Timer n Counter Data Register 0x0000_0000 

TMRn _CAP 

n = 0,1,2,3,4,5 
TMRn_BA+0x018 R Enhance Timer n Capture Data Register 0x0000_0000 

TMRn _ECTL 

n = 0,1,2,3,4,5 
TMRn_BA+0x020 R/W Enhance Timer n Extended Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 67 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

9 PULSE WIDTH MODULATION (PWM) 

9.1 Overview 

This chip has two PWM controllers, and each one has 4 independent PWM outputs, CH0~CH3, or as 
2 complementary PWM pairs, (CH0, CH1), (CH2, CH3) with 2 programmable dead-zone generators. 
Each PWM pair has one Prescaler, one clock divider, two clock selectors, two 16-bit PWM counters, 
two 16-bit comparators, and one Dead-Zone generator. They are all driven by APB system clock 
(PCLK) in chip. Each PWM channel can be used as a timer and issue interrupt independently.  

Two channels PWM Timers in one pair share the same prescaler. The Clock divider provides each 
PWM channel with 5 divided clock sources (1, 1/2, 1/4, 1/8, 1/16). Each channel receives its own clock 
signal from clock divider which receives clock from 8-bit prescaler. The 16-bit down-counter in each 
channel receive clock signal from clock selector and can be used to handle one PWM period. The 16-
bit comparator compares PWM counter value with threshold value in register CMR (PWM_CMR[15:0]) 
loaded previously to generate PWM duty cycle. The clock signal from clock divider is called PWM 
clock. Dead-Zone generator utilize PWM clock as clock source. Once Dead-Zone generator is 
enabled, two outputs of the corresponding PWM channel pair will be replaced by the output of Dead 
Zone generator. The Dead-Zone generator is used to control off-chip power device.  

To prevent PWM driving output pin with unsteady waveform, 16-bit down-counter and 16-bit 
comparator are implemented with double buffering feature. User can feel free to write data to counter 
buffer register and comparator buffer register without generating glitch. When 16-bit down-counter 
reaches zero, the interrupt request is generated to inform CPU that time is up. When counter reaches 
zero, if counter is set as periodic mode, it is reloaded automatically and start to generate next cycle. 
User can set PWM counter as one-shot mode instead of periodic mode. If counter is set as one-shot 
mode, counter will stop and generate one interrupt request when it reaches zero. The value of 
comparator is used for pulse width modulation. The counter control logic changes the output level 
when down-counter value matches the value of compare register. 

9.2 Features 

 Two PWM controllers, each one has 4 channels with a 16-bit down counter and an 
interrupt each. 

 2 complementary PWM pairs, (CH0, CH1), (CH2, CH3), with a programmable dead-zone 
generator each. 

 Internal 8-bit prescaler and a clock divider for each PWM paired channel. 

 Independent clock source selection for each PWM channel. 

 Internal 16-bit down counter and 16-bit comparator for each independent PWM channel. 

 PWM down-counter supports One-shot or Periodic mode. 



 NUC980 

May 2, 2019  Page 68 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

9.3 Block Diagram 

1

1/2

1/4

1/8

1/16

PCLK
8-bit 

Prescaler

Control 

logic

5
-1

 M
u

x
5

-1
 M

u
x

PWM1_CNR

Control 

logic

PWM0_CLK

PWM1_CMR

PWM0_CNR PWM0_CMR

Dead-Zone 

Generator 0 DZEN01

(PWM_PCR[4])

DZEN01

(PWM_PCR[4])

CH0_INV 
(PWM_PCR[2])

CH1_INV 
(PWM_PCR[10])

1

1

0

0

1

0

1

0

CLKSEL1
(PWM_CSR[6:4])

CLKSEL0
(PWM_CSR[2:0])

 

Figure 9.3-1 PWM Block Diagram 

  



 NUC980 

May 2, 2019  Page 69 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

9.4 Functional Description 

 PWM Timer Operation 

The PWM period and duty control are decided by register PWMx_CNR and PWMx_CMR registers. 
The PWM-timer timing operation is shown in following figure. The pulse width  

modulation follows the formula below: 

PWM frequency = PWM_CLK / ((prescale + 1) * (clock divider)) / (CNR + 1) 

PWM duty ratio = (CMR + 1) / (CNR + 1) 

When CMR >= CNR: PWM output is always high. When CMR < CNR: PWM outputs low for (CNR - 
CMR) PWM clocks, and PWM outputs high for (CMR + 1) PWM clocks. If CMR = 0, then PWM output 
low for CNR PWM clocks and output high for 1 PWM clock.. 

+

-

CMR+1

CNR

PWM Timer

Comparator 

Output CNR

CMR

Update 

new CMR

Start

Initialize 

PWM

PWM

Ouput

CMR+1CNR+1

 

Figure 9.4-1 PWM Internal Comperator Output 

Following waveform illustrate the operation of PWM. Whenever the current counter equals to compare 
register or reaches 0, output level toggles. 

Comparator

(CMR) 1 0

PWM 

down- counter 3 3 2 1 0 4 3 2 1 0 4

PWM- Timer 

output

1

CMR = 1

CNR = 3

Auto reload = 1

(CH0MOD=1)

Set CH0EN = 1

(PWM-Timer starts running)

CMR= 0

CNR= 4

Auto- load

(S/W write new value)

Auto- load

(Write initial setting)

(H/W update value) (PIIR0 is set by H/W)
(PIIR0 is set by H/W)

 

Figure 9.4-2 PWM Counter Reload 

 PWM double buffer 

The PWM timers have double buffering function; the reload value is updated at the start of next period 



 NUC980 

May 2, 2019  Page 70 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

without affecting current timer operation. The PWM counter value can be written into CNR 
(PWM_CNR[15:0]). 

PWM 

Waveform

write a nonzero number to 

prescaler & setup clock 

dividor

Start

Write

CN= 150 

CM=50

151

51

200

50

Write

CN= 199 

CM=49

Write

CN= 99 

CM=0

100

1

Write

CN= 0 

CM=XX

Stop

 

Figure 9.4-3 PWM Double Buffer Illustration (I) 

Following figure is an example of using double buffer feature. 

Modulate PWM controller ouput duty ratio ( CN = 150)

Write 

CM=100

Write 

CM=50

Write 

CM=0

1 PWM cycle = 151 1 PWM cycle = 151 1 PWM cycle = 151

101 51 1

 

Figure 9.4-4 PWM Double Buffer Illustration (II) 

 Periodic and One-Shot Operation 

The CHxMOD bits defines PWM operation in Periodic or One-shot mode If CHxMOD is set to one 
(periodic mode), the controller loads CNR (PWM_CNR[15:0]) to PWM counter when PWM counter 
reaches zero. If CNR is set to zero, PWM counter will be halt when PWM counter counts to zero. 

In one-shot mode (CHxMOD=0), the corresponding channel will output only one cycle of duty 
waveform and then PWM counter will be stopped if no further corresponding duty register updated. 
When PWM counter is running, updating corresponding duty register will engage the next 

 Dead-Zone Generator 

PWM implements Dead Zone generator. They are built for power device protection. This function 
generates a programmable time gap called “Dead-Zone” to delay PWM rising output, and it is in order 
to prevent damage for the power switch devices that connected to the PWM output pins. User can 
program Dead-Zone counter to determine the Dead Zone interval. Following figure shows Dead-Zone 



 NUC980 

May 2, 2019  Page 71 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

operation. 

PWM- Timer 

Output 0/2

PWM- Timer

Inversed output 

1/3

Dead- Zone 

Generator 

output 0/2

Dead- Zone 

Generator 

output 1/3

Dead zone interval

 

Figure 9.4-5 PWM Output with Dead Zone Operation 

 PWM Timer Start Procedure 

Take PWM channel 0 for example, and the following procedure is for starting a PWM. 

1. Setup clock selector CLKSEL0 (PWM_CSR[2:0]). 

2. Setup prescaler PRESCALE (PWM_PPR[7:0]). 

3. Setup inverter on/off CH0INV (PWM_PCR[2]). 

4. Setup dead zone generator on/off DZEN01 (PWM_PCR[4]), also set dead-zone interval in 
DZL01 (PWM_PPR[23:16]) if dead-zone enabled. 

5. Setup CH0MOD (PWM_PCR[3]) to select operation mode. 

6. Setup interrupt enable register PIER0 (PWM_PIER[0]) 

7. Setup the corresponding GPI/O pins to PWM function 

8. Enable PWM down-counter by set CH0EN((PWM_PCR[0])) to 1. 

9. Setup PWM comparator register CMR (PWM_CMR[15:0]) and PWM counter register CNR  

10. (PWM_CNR[15:0]) for setting PWM period and duty length 

Step1~8 may be execute in other order without affect the behavior of PWM timer. Below is a sample 
setting PWM0 frequency to 1000Hz and 40% duty ratio. 

// Assume PWM clock source, PCLK, is 75 MHz. 

PWM->PPR = 74;  // so now PWM clock is 75 MHz / (74 + 1) = 1 MHz 

PWM->CSR = 4;  // Prescale output divide by 1 

PWM->PCR = 9;  // Enable PWM0 in periodic mode 

 

// 1M / 1000 = 1000 

// 1000 * 40% = 400 

PWM->CMR = (400 - 1); 

PWM->CNR = (1000 - 1); 

 PWM Timer Stop Procedure 



 NUC980 

May 2, 2019  Page 72 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

There are two methods to stop PWM timer, here using channel 0 as example. 

Method 1: 

Set 16-bit down counter CNR (PWM_CNR[15:0]) as 0. When interrupt request happen or polling 
interrupt bit PIIR0(PWM_PIIR[0]) until set 1, disable PWM Timer by setting CH0EN = 0 (PWM_PCR[0] 
= 0). (Recommended). 

Method 2: 

Disable PWM Timer by setting CH0EN = 0 (Not recommended) 

Method 2 is not recommended because clear CH0EN will stop PWM output immediately and cause an 
abruptly change in PWM duty ration. This may damage the motor connected with PWM.  

 

9.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

PWM Base Address: 

PWM0_BA = 0xB005_8000 

PWM1_BA = 0xB005_9000 

PWM_PPR PWM_BA+0x000 R/W PWM Pre-scale Register 0000_0000 

PWM_CSR PWM_BA+0x004 R/W PWM Clock Select Register  0000_0000 

PWM_PCR PWM_BA+0x008 R/W PWM Control Register 0000_0000 

PWM0_CNR PWM_BA+0x00C R/W PWM Counter Register 0 0000_0000 

PWM0_CMR PWM_BA+0x010 R/W PWM Comparator Register 0 0000_0000 

PWM0_PDR PWM_BA+0x014 R PWM Data Register 0 0000_0000 

PWM1_CNR PWM_BA+0x018 R/W PWM Counter Register 1 0000_0000 

PWM1_CMR PWM_BA+0x01C R/W PWM Comparator Register 1 0000_0000 

PWM1_PDR PWM_BA+0x020 R PWM Data Register 1 0000_0000 

PWM2_CNR PWM_BA+0x024 R/W PWM Counter Register 2 0000_0000 

PWM2_CMR PWM_BA+0x028 R/W PWM Comparator Register 2 0000_0000 

PWM2_PDR PWM_BA+0x02C R PWM Data Register 2 0000_0000 

PWM3_CNR PWM_BA+0x030 R/W PWM Counter Register 3 0000_0000 

PWM3_CMR PWM_BA+0x034 R/W PWM Comparator Register 3 0000_0000 

PWM3_PDR PWM_BA+0x038 R PWM Data Register 3 0000_0000 

PWM_PIER PWM_BA+0x03C R/W PWM Timer Interrupt Enable Register 0000_0000 

PWM_PIIR PWM_BA+0x040 R/W PWM Timer Interrupt Indication Register 0000_0000 

 



 NUC980 

May 2, 2019  Page 73 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

10 WATCHDOG TIMER (WDT) 

10.1 Overview 

The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into an 
unknown state. This prevents system from hanging for an infinite period of time. Besides, this 
Watchdog Timer supports the function to wake-up system from Idle/Power-down mode. 

10.2 Features 

 18-bit free running up counter for WDT time-out interval. 

 Selectable time-out interval (24~ 218) and the time-out interval is 0.48828125 ms ~ 8 s if 
WDT_CLK = 32.768 kHz. 

 System kept in reset state for a period of (1 / WDT_CLK) * 63. 

 Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK 
reset delay period. 

 Supports to force WDT enabled after chip powered on or reset by setting WDTON in 
PWRON register. 

 Supports WDT time-out wake-up function only if WDT clock source is selected as 32 kHz. 

 

10.3 Block Diagram 

18-bit WDT Counter

0 … ... 15.. 4 16 17

000
001

110
111

:
:

WDT_ CLK

Time-
Out

Interval

Period
select

Reset

Delay

Period 

Select

Watchdog 
Interrupt

Watchdog 

Reset

RSTCNT(WDT_CTL[0])

Reset WDT 

Counter

WDTEN

(WDT_CTL[7])
Wakeup CPU from 

Power - down mode

TOUTSEL

(WDT_CTL[10:8])

IF

(WDT_CTL[3])

INTEN

(WDT_CTL[6])

RSTEN

(WDT_CTL[1]) RSTF

(WDT_CTL[2])

WKEN

(WDT_CTL[4]) WKF

(WDT_CTL[5])

 

Figure 10.3-1 WDT Block Diagram 

 

 

  



 NUC980 

May 2, 2019  Page 74 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

10.4 Functional Description 

 WDT Configuration 

Watchdog timer is used to trigger a system reset while the software execute to an abnormal state, this 
prevents the system stays in an uncontrollable state for unlimited duration. Besides, WDT support 
wakeup function that can wake up CPU from power-down state and right before CPU enters power-
down state, its counter will reset automatically, so the wakeup duration is predictable. The WDT 
includes an 18-bit free running up counter with programmable time-out intervals. Table below shows 
the WDT time-out interval period selection, TWDT in the table depends on the peripheral clock source 
selection through WDT_S(CLK_DIVCTL8[9:8]), it can be HXT (external high speed 12 MHz crystal), 
12 MHz/512, PCLK/4096, or LXT (external low speed 32 kHz crystal). 

TOUTSEL (WDT_CTL[10:8]) Timeout Interval Period WDT_CLK=HXT WDT_CLK=LXT 

000 24 * TWDT 1.33 uS 488.28 uS 

001 26 * TWDT 5.33 uS 1.95 mS 

010 28 * TWDT 21.3 uS 7.81 mS 

011 210 * TWDT 85.3 uS 31.25 mS 

100 212 * TWDT 341.3 uS 125 mS 

101 214 * TWDT 1.37 mS 0.5 S 

110 216 * TWDT 5.46 mS 2.0 S 

111 218 * TWDT 21.8 mS 8.0 S 

Table 10.4-1 WDT Timeout Period 

Setting WDTEN (WDT_CTL[7]) to 1 will enable the WDT function and the WDT counter to start 
counting up. When the WDT up counter reaches the TOUTSEL (WDT_CTL[10:8]) settings, WDT time-
out interrupt will occur then WDT time-out interrupt flag IF (WDT_CTL[3]) will be set to 1 immediately, 
if INTEN(WDT_CTL[6]) is set 1, timeout event will also triggers interrupt. Software must set RSTCNT 
(WDT_CTL[0]) bit or write 0x00005AA5 to WDT_RSTCNT register to reset WDT counter within the 
reset delay period which is configured by RSTDSEL (WDT_ALTCTL[1:0]) to prevent system reset. 
There are eight time-out interval period can be selected by setting TOUTSEL (WDT_CTL[10:8]). If 
RSTEN (WDT_CTL[1]) is 1, and WDT counter is not reset before reset delay period times out, WDT 
will set WDTRSTS (SYS_RSTSTS[5]) but and reset CPU. This reset signal will last for 63 WDT clocks 
(TRST), and then CPU resets. WDTRSTS flag will not be cleared by WDT reset signal. User could 
check the status of this flag to decide if the system source is WDT or not. 

Next figure shows the Watchdog Timer Time-out Interval and Reset Period Timing. 



 NUC980 

May 2, 2019  Page 75 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

TTIS

WDT reset

(low reset)

TRSTD

TRST

TWDT

· TWDT : Watchdog Clock Time Period

· TTIS : Watchdog Time-out Interval Period ( (2
4
 ~ 2

18
) * TWDT )

· TRSTD : Watchdog Reset Delay Period

             - Selectable 3/18/130/1026 * TWDT delay period controlled

               by RSTDSEL(WDT_ALTCTL [1:0])

· TRST : Watchdog Reset Period ( 63 * TWDT )

WDT_CLK

IF = 1

RSTF = 1

(if RSTEN = 1)

IF

RSTF

 

 

Figure 10.4-1 WDT Timeout Interval and Reset Period Timing 

NOTE: If WDT is not enabled by power-on setting but rather enabled by software after system boot 
up, then WDT timeout cannot reset the system successfully. 

 WDT Wakeup 

If WDT clock source is selected to 32 kHz, system can be waken-up from Power-down mode while 
WDT time-out interrupt signal is generated and WKEN (WDT_CTL[4]) enabled. Notice that user 
should set XTAL_EN (CLK_PMCON [0]) to enable crystal clock source before system entries power 
down mode because the system peripheral clock are disabled when system is power down mode. In 
the meanwhile, the WDT (SYS_WKUPSSR[28]) will set to 1 automatically, user can check WDT 
(SYS_WKUPSSR[28]) status by software to recognize the system has been waken-up by WDT time-
out interrupt or not. 

  



 NUC980 

May 2, 2019  Page 76 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

10.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

WDT Base Address: 

WDT_BA = 0xB004_0000 

WDT_CTL WDT_BA+0x00 R/W WDT Control Register 0x0000_0700 

WDT_ALTCTL WDT_BA+0x04 R/W WDT Alternative Control Register 0x0000_0000 

WDT_RSTCNT WDT_BA+0x08 W WDT Reset Counter Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 77 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

11 WINDOW WATCHDOG TIMER (WWDT) 

11.1 Overview 

The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window 
period to prevent software run to uncontrollable status by any unpredictable condition. 

11.2 Features 

 6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to make the 
WWDT time-out window period flexible. 

 Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale counter 
period of WWDT counter. 

11.3 Block Diagram 

6-bit down counter
11-bit 

Prescale

6-bit compare value

(CMPDAT)

WWDT_CLK

0x3F

Write

RLDCNT =

0x00005AA5

comparator

CNTDAT = CMPDAT

WWDTIF

(STATUS[0])

CNTDAT > CMPDAT

INTEN

(WWDT_CTL[1])

WWDT 

Interrupt

WWDT 

Reset

CNTDAT = 0

Write RLDCNT

WWDTRF

(STATUS[1])

PSCSEL

(WWDT_CTL[11:8])

6-bit down 

counter value

(CNTDAT)

synchronizer

 

Figure 11.3-1 WWDT Block Diagram 

  



 NUC980 

May 2, 2019  Page 78 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

11.4 Functional Description 

 Timeout Setting 

The WWDT includes a 6-bit down counter with programmable prescale value to define different 
WWDT time-out intervals. The clock source of 6-bit WWDT is based on system clock divided by 4096 
(PCLK/4096), external 12 MHz oscillator, external 12 MHz oscillator divided by 512, or internal 32 kHz 
oscillator with a programmable 11-bitprescale counter value which controlled by PSCSEL 
(WWDT_CTL[11:8]). Also, the correlate of PSCSEL (WWDT_CTL[11:8]) and prescale value are listed 
in the following table.： 

 

PSCSEL Prescaler Value Max. Timeout Period 
Max. Time-out Interval 

 WWDT_CLK=HXT 

Max. Time-out Interval 

 WWDT_CLK=LXT 

0000 1 1 * 64 * TWWDT 5.33 uS 1.95 mS 

0001 2 2 * 64 * TWWDT 10.66 uS 3.91 mS 

0010 4 4 * 64 * TWWDT 21.33 uS 7.81 mS 

0011 8 8 * 64 * TWWDT 42.67 uS 15.63 mS 

0100 16 16 * 64 * TWWDT 85.33 uS 31.25 mS 

0101 32 32 * 64 * TWWDT 170.67 uS 62.50 mS 

0110 64 64 * 64 * TWWDT 341.33 uS 125.00 mS 

0111 128 128 * 64 * TWWDT 682.67 uS 250.00 mS 

1000 192 192 * 64 * TWWDT 1.02 mS 375.00 mS 

1001 256 256 * 64 * TWWDT 1.37 mS 500.00 mS 

1010 384 384 * 64 * TWWDT 2.05 mS 750.00 mS 

1011 512 512 * 64 * TWWDT 2.73 mS 1.00 S 

1100 768 768 * 64 * TWWDT 4.10 mS 1.50 S 

1101 1024 1024 * 64 * TWWDT 5.46 mS 2.00 S 

1110 1536 1536 * 64 * TWWDT 8.19 mS 3.00 S 

1111 2048 2048 * 64 * TWWDT 10.09 mS 4.00 S 

Table 11.4-1WWDT Timeout Period 

When the WWDTEN (WWDT_CTL[0]) is set, WWDT down counter will start counting from 0x3F to 0 
and cannot be stopped. Software can read current counter value from WWDT_CNT register. 

If WWDT counter reaches 0, WWDT will trigger a system reset. Before WWDT counter reaches 0, 
software can write a specific value, 0x00005AA5, to register WWDTRLD to reload counter to its initial 
value 0x3F and prevent WWDT reset. This reload can only be set while counter value is smaller or 
equal to WINCMP. If software write WWDTRLD will cause system reset whiel WWDT counter is 
greater than WINCMP. 

To prevent program runs to disable WWDT counter counting unexpected, the WWDT_CTL register 
can only be written once after chip is powered on or reset. User cannot disable WWDT counter 
counting (WWDTEN[0]), change counter prescale period (PSCSEL) or change window compare value 
(CMPDAT) while WWDTEN (WWDT_CTL[0]) has been enabled by user unless chip is reset. 

 WWDT Interrupt 



 NUC980 

May 2, 2019  Page 79 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

During down counting by the WWDT counter, the WWDTIF (WWDT_STATUS[0]) is set to 1 while the 
WWDT counter value (CNTDAT) is equal to window compare value (CMPDAT) and WWDTIF can be 
cleared by user by writing 1 to this bit. If INTEN (WWDT_CTL[1]) is also set to 1 by user, the WWDT 
compare match interrupt signal is generated also while WWDTIF is set to 1 by hardware.. 

 System Reset 

When WWDTIF (WWDT_STATUS[0]) is generated, user must reload WWDT counter value to 0x3F by 
writing 0x00005AA5 to WWDT_RLDCNT register, and also to prevent WWDT counter value reached 
to 0 and generate WWDT reset system signal to info system reset. If current CNTDAT 
(WWDT_CNT[5:0]) is larger than CMPDAT (WWDT_CTL[21:16]) and user writes 0x00005AA5 to the 
WWDT_RLDCNT register, the WWDT reset system signal will be generated immediately to cause 
chip reset also. User can check if WWDT caused system reset or not be checking WWDTRF 
(WWDT_STATUS[1]) bit. If this bit is set 1, it means system was reset by WWDT. Software can write 
1 to clear this bit. 

Comparator

6-bit compare value 
CMPDAT

6-bit down counter 
value CNTDAT

from 0x3F to 0x00

Write RLDCNT 
0x5AA5 will 
reset system

Write RLDCNT 
0x5AA5 will 

reload CNTDAT
to 0x3F

CNTDAT > CMPDAT
or CNTDAT = 0

CNTDAT <= CMPDAT

 

Figure 11.4-1 WWDT Reset and Reload Behavior 

 WWDT Window Setting Limitations 

When user writes 0x00005AA5 to WWDT_RLDCNT register to reload WWDT counter value to 0x3F, it 
needs 3 WWDT clocks to sync the reload command to actually perform reload action. Notice that if 
user set PSCSEL (WWDT_CTL[11:8]) to 0000, the counter prescale value should be as 1, and the 
CMPDAT (WWDT_CTL[21:16]) must be larger than 2. Otherwise, writing WWDT_RLDCNT register to 
reload WWDT counter value to 0x3F is unavailable, WWDTIF(WWDT_STATUS[0]) is generated, and 
WWDT reset system event always happened. Following table list the prescale value and CMPDAT 
setting limitations: 

PSCSEL (WWDT_CTL[11:8]) Prescale Value Valid CMPDAT (WWDT_CTL[21:16]) Value 

0000 1 0x3 ~ 0x3F 

0001 2 0x2 ~ 0x3F 

Others Others 0x0 ~ 0x3F 

Table 11.4-2 WWDT CMPDAT Setting Limitation 

And also, after system enter power-down mode, WWDT stop counting. So it is not possible to wake up 
system using WWDT. 

  



 NUC980 

May 2, 2019  Page 80 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

11.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

WWDT Base Address: 

WWDT_BA = 0xB004_0100 

WWDT_RLDCNT WWDT_BA+0x00 W WWDT Reload Counter Register 0x0000_0000 

WWDT_CTL WWDT_BA+0x04 R/W WWDT Control Register 0x003F_0800 

WWDT_STATUS WWDT_BA+0x08 R/W WWDT Status Register 0x0000_0000 

WWDT_CNT WWDT_BA+0x0C R WWDT Counter Value Register 0x0000_003F 



 NUC980 

May 2, 2019  Page 81 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

12 REAL TIME CLOCK (RTC) 

12.1 Overview 

Real Time Clock (RTC) block can operate with independent power supply (RTC_VDD) while the 
system power is off. The clock source of RTC controller is from an external 32.768 kHz low-speed 
crystal. The RTC controller provides the real time clock and calendar information. The data format of 
RTC time and calendar message are all expressed in BCD (Binary Coded Decimal) format. The RTC 
also provide frequency compensation mechanism for 32.768 kHz clock source  

12.2 Features 

 Supports real time counter and calendar counter for RTC time and calendar check.  

 Supports time (hour, minute, second) and calendar (year, month, day) alarm and alarm 
mask settings  

 Selectable 12-hour or 24-hour time scale  

 Supports Leap Year indication  

 Supports Day of the Week counter  

 Supports frequency compensation mechanism for 32.768 kHz clock source  

 All time and calendar message expressed in BCD format  

 Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 
1/32, 1/16, 1/8, 1/4, 1/2 and 1 second  

 Supports RTC Time Tick and Alarm match interrupt  

 Supports chip wake-up from Idle or Power-down mode while alarm or relative alarm 
interrupt is generated  

 Supports 64 bytes spare registers to store user‟s important information  



 NUC980 

May 2, 2019  Page 82 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

12.3 Block Diagram 

2^15 clock divider

1 Hz

Alarm interrupt generator

Time counter Calendar counter

Time alarm

counter

Calendar alarm

counter

Day of the week

counter

1 Day

FCR

Compensate frequency

by software

Tick interrupt

generator

XTALIN

XTALOUT

Alarm

interrupt

Tick

interrupt

APB

interface

psel

penable

pwrite

pwdata

paddr

pclk

prdata

Select one Tick

period

 

Figure 12.3-1 RTC Block Diagram 

 

 

  



 NUC980 

May 2, 2019  Page 83 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

12.4 Functional Description 

 RTC Initiation 

When RTC block is power on, programmer has to write a number (0xa5eb1357) to RTC_INIT to reset 
all logic. RTC_INIT act as hardware reset circuit. Once RTC_INIT has been set as 0xa5eb1357, user 
cannot reload any other value. 

 RTC write enable 

Register RTC_RWEN bit 15~0 is RTC read /write password. It is used to avoid signal interference 
from system during system power off. RTC_RWEN bit 15~0 has to be set as 0xa965 before user want 
to write new data into all registers besides RTC_INIT. If user set RTC_RWEN as 0xa965, RWENF will 
be raised high. Then user can feel free to write data into register. RWENF will keep high for a short 
period (about 24ms) and it will be pull low by internal state machine automatically. User can disable 
RTC clock (CLK_PCLKEN0[2]) to reduce the Power Consumption. 

RTC_TALM, RTC_CALM, RTC_TIME and RTC_CAL are all BCD counter, but RTC_FREQADJ is not 
a BCD counter.  

Programmer must be aware that the RTC block does not check whether the loaded value is 
reasonable. For example, Load RTC_CAL as 201a (year), 13 (month), 00 (day), or RTC_CAL does 
not match with RTC_WEEKDAY, etc. 

Reset Status：  

Register Value  Description  

RTC_RWEN    0 RTC register read/write disable 

RTC_CAL 05 , 1 ,1 2005-1-1 

RTC_TIME 00 00 00 00 hour, 00 minute, 00 second 

RTC_CALM 00,00,00 2000-0-0 

RTC_TALM 00,00,00 00 hour, 00 minute, 00 second 

RTC_TIMEFMT 1 24 hour time scale 

RTC_WEEKDAY 6 Saturday 

RTC_INTEN 0 
Tick interrupt disable 

Alarm interrupt disable 

RTC_INTSTS 0 
Tick interrupt not occur 

Alarm interrupt not occur 

RTC_LEAPYEAR  0 This year not leap year 

RTC_TICK   0 Time tick enable 

Table 12.4-1 RTC Reset Value 

 12/24 hour Time scale Selection  

The 12/24 hour time scale selection decided by 24HEN (RTC_TIMEFMT[0]). 



 NUC980 

May 2, 2019  Page 84 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

24-hour time scale 12-hour time scale 24-hour time scale 12-hour time scale 

00 12(AM12) 12 32(PM12) 

01 01(AM01) 13 21(PM01) 

02 02(AM02) 14 22(PM02) 

03 03(AM03) 15 23(PM03) 

04 04(AM04) 16 24(PM04) 

05 05(AM05) 17 25(PM05) 

06 06(AM06) 18 26(PM06) 

07 07(AM07) 19 27(PM07) 

08 08(AM08) 20 28(PM08) 

09 09(AM09) 21 29(PM09) 

10 10(AM10) 22 30(PM10) 

11 11(AM11) 23 31(PM11) 

Table 12.4-2 RTC 12/24 Hour Mode 

 Set Calendar and Time 

1. Write 0xa965 to RTC_RWEN means enable RTC access enable/disable password 

2. Read register RWENF(RTC_RWEN[16]), RTC is read/write enable if it’s equal to 1. 

3. RWENF(RTC_RWEN[16]) will be cleared automatically after 1024 RTC clock  

4. Set register 24HEN(RTC_TIMEFMT[0]) bit. (select to 24/12-hour time scale). 

5. Set year, month and day to register RTC_CAL 

6. Set day of week to register RTC_WEEKDAY 

7. Set hour, minute and second to register RTC_TIME 



 NUC980 

May 2, 2019  Page 85 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W

completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT[0])

Set time, day and calendar

(RTC_TIME, 

RTC_WEEKDAY, 

RTC_CAL)

End

Yes

 

Figure 12.4-1 Set RTC Calander and Time Flow 

 Set Calendar and Time Alarm (Absolute)  

1. Set ALMINT(RTC_INTSTS[0]) = 1 to clear alarm interrupt. 

2. Set time and calendar same as above step 1-7 

3. Set alarm year, month and day to register RTC_CALM. 

4. Set alarm hour, minute and second to register RTC_TALM 

5. Set the bit ALMIEN(RTC_INTEN[0]) for alarm interrupt enable. 

6. Set the bit ALArm_EN(RTC_PWRCTL[3]) for alarm function enable. 

Note: Week of Day also the alarm condition 



 NUC980 

May 2, 2019  Page 86 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT)

Set time, day and calendar

(RTC_TIME, 

RTC_WEEKDAY, 

RTC_CAL)

End

Yes

Set alarm interrupt enable

(ALMIEN of 

RTC_INTEN[0])

Set alarm time and calendar

(RTC_TALM, RTC_CALM)

Set alarm interrupt enable

(ALARM_EN of 

RTC_PWRCTL[3])

 

Figure 12.4-2 Set RTC Calander and Timer Alarm Flow 

 Set Time Alarm (Relative) 

1. Set and prepare the RTC_INTSTS of RTC alarm 

2. Write 0xA965 to RTC_RWEN means enable RTC access enable password  

3. Read register bit RWENF(RTC_RWEN[16]), RTC is read/write enable if it’s equal to 1. 

4. Set the relative time to RELALM_TIME(RTC_PWRCTL[27:16]) 

5. Maximum relative time is 1800(about 30 minutes) 

6. Set the bit RELALMIEN(RTC_INTEN[4]) for alarm interrupt enable. 

7. Set the bit REL_ALArm_EN(RTC_PWRCTL[4]) for relative alarm interrupt enable 

Note: Please disable relative alarm interrupt enable (RELALMIEN(RTC_INTEN[4])) after the alarm 
occurs. Otherwise, it will issue interrupt again after 30 minutes  



 NUC980 

May 2, 2019  Page 87 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

RTC Start

Enable register R/W

(AER)

Enable register R/W

completeted

(bit 16 of AER be high?)

No

Set relative time for alarm

(RELATIVE_TIME)

Disable register R/W

(AER)

End

Yes

Set relative alarm interrupt enable

(REL_ALARM_EN of PWRON)

Set relative alarm interrupt enable

(RAIER of RIER)

 

Figure 12.4-3 Set Relative Alarm Flow 

 Set wake-up function 

The programming procedure listed is as follows: 

1. Set and prepare the RTC_INTSTS of RTC wake-up interrupt 

2. Set absolute or relative alarm 

3. Enable RTC Wakeup enable (WAKEUPIEN(RTC_INTEN[2])) 

4. Let system enter power down mode 

5. When RTC reach alarm time, system will wake-up system 

If user won’t enable wakeup function, please do not enable the alarm enable bit 
(WAKEUPIEN(RTC_INTEN[2])).  

Please disable relative alarm interrupt enable (RELALMIEN(RTC_INTEN[4])) after the alarm occurs. 
Otherwise, it will issue interrupt again after 30 minutes. 



 NUC980 

May 2, 2019  Page 88 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT)

Set time, day and calendar

(RTC_TIME, RTC_WEEKDAY, 

RTC_CAL)

Yes

End

Set alarm time and calendar

(RTC_TALM, RTC_CALM)

Enable RTC Wake-up

(WAKEUPIEN(RTC_INTEN[2]))

Set relative time for alarm

(RELALM_TIME)

Set relative alarm interrupt enable

(REL_ALARM_EN(RTC_PWRCTL[4]))

Set relative alarm interrupt enable

(RELALMIEN(RTC_INTEN[4]))

Set alarm interrupt enable

(ALMIEN(RTC_INTEN[0]))

Set alarm interrupt enable

(ALARM_EN(RTC_PWRCTL[3]))

Absolute or Relative Absolute Relative

Enter Power Down Mode

 

Figure 12.4-4 Set Wake-up Function Flow 

 Set tick interrupt 

The periodic RTC Time Tick interrupt has 8 period interval options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 



 NUC980 

May 2, 2019  Page 89 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

and 1 second which are selected by RTC_TICK (RTC_TICK[2:0] Time Tick Register. 

The programming procedure listed is as follows: 

1. Set and prepare the RTC_INTSTS of RTC tick interrupt 

2. Write 0xA965 to AER means enable RTC access enable password. 

3. Read register bit RWENF(RTC_RWEN[16]), RTC is read/write enable if it’s equal to 1. 

4. Set the RTC_TICK[2:0] for tick interrupt happen time interval per second  

5. Set the bit TICKIEN(RTC_INTEN[1]) for alarm interrupt enable 

RTC Start

Initialize completed

(RTC_INIT[0] be high?)

No

Enable register R/W

(RTC_RWEN)

Yes

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Initialize RTC

(RTC_INIT)

Set tick interrupt

(TICKIEN)

End

Yes

Set tick number

(RTC_TICK[2:0])

 

Figure 12.4-5 Set Tick Interrupt Flow 

 Frequency Compensation 

The RTC_FREQADJ allows software to make digital compensation to a clock input. The frequency of 
clock input must be in the range from 32776Hz to 32761Hz. User can enable 
SRCSEL(TIMERx_ECTL[16]) bit to measure RTC 1Hz clock during manufacture, and store the value 
in Flash memory for retrieval when the product is first power on. 

Following are the compensation examples: 

Frequency counter measurement : 32773.65Hz  

Integer part: 32773 



 NUC980 

May 2, 2019  Page 90 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Search Following Table:  

Integer part of 
detected value 

RTC_FREQADJ[11:8] Integer part of 
detected value 

RTC_FREQADJ[11:8] 

32776 1111 32768 0111 

32775 1110 32767 0110 

32774 1101 32766 0101 

32773 1100 32765 0100 

32772 1011 32764 0011 

32771 1010 32763 0010 

32770 1001 32762 0001 

32769 1000 32761 0000 

Table 12.4-3 RTC Frequency Compensation 

RTC_FREQADJ[11:8](integer part) is 0xC 

Fraction part：0.65 * 60 = 39 = 0x27, RTC_FREQADJ[7:0](Fraction part) is 0x27 

The register RTC_FREQADJ is 0xC27  



 NUC980 

May 2, 2019  Page 91 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

12.5 Register Map 

R: Read only, W: Write only, R/W: Both read and write, C: Only value 0 can be written 

Register Address R/W Description Reset Value 

RTC_BA = 0xB004_1000 

RTC_INIT RTC_BA+0x000 R/W RTC Initiation Register Undefined 

RTC_RWEN RTC_BA+0x004 R/W RTC Access Enable Register 0x0000_0000 

RTC_FREQADJ RTC_BA+0x008 R/W RTC Frequency Compensation Register 0x0000_0700 

RTC_TIME RTC_BA+0x00C R/W RTC Time Counter Register 0x0000_0000 

RTC_CAL RTC_BA+0x010 R/W RTC Calendar Counter Register 0x0005_0101 

RTC_TIMEFMT RTC_BA+0x014 R/W RTC Time Format Selection Register 0x0000_0001 

RTC_WEEKDAY RTC_BA+0x018 R/W RTC Day of the Week Register 0x0000_0006 

RTC_TALM RTC_BA+0x01C R/W RTC Time Alarm Register 0x0000_0000 

RTC_CALM RTC_BA+0x020 R/W RTC Calendar Alarm Register 0x0000_0000 

RTC_LEAPYEAR RTC_BA+0x024 R RTC Leap year Indicator Register 0x0000_0000 

RTC_INTEN RTC_BA+0x028 R/W RTC Interrupt Enable Register 0x0000_0000 

RTC_INTSTS RTC_BA+0x02C R/C RTC Interrupt Status Register 0x0000_0000 

RTC_TICK RTC_BA+0x030 R/W RTC Time Tick Register 0x0000_0000 

RTC_PWRCTL RTC_BA+0x034 R/W RTC Power Control Register 0x0000_7000 

RTC_PWRCNT RTC_BA+0x038 R RTC Power Control Counter Register 0x0000_0000 

RTC_SPR0 ~  

RTC_SPR15 

RTC_BA+0x040 ~ 

RTC_BA+0x07C 

R/W RTC Spare Register 0 ~ 15 0x0000_0000 



 NUC980 

May 2, 2019  Page 92 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

13 UART 

13.1 Overview 

The chip provides 10 channels of Universal Asynchronous Receiver/Transmitters (UART). The UART 
controller performs Normal Speed UART and supports flow control function. The UART controller 
performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial 
conversion on data transmitted from the CPU. Each UART controller channel supports ten types of 
interrupts. The UART controller also supports IrDA SIR, LIN(Only UART1 /UART2 with LIN function) 
and RS-485 function modes and auto-baud rate measuring function.  

There are ten types of interrupts, Receive Data Available Interrupt (RDAINT), Transmit Holding 
Register Empty Interrupt (THERINT), Transmitter Empty Interrupt (TXENDINT), Receive Line Status 
Interrupt (parity error or framing error or break interrupt) (RLSINT), MODEM Status Interrupt 
(MODEMINT), Receiver Buffer Time-out Interrupt (RXTOINT), Buffer Error Interrupt (BUFERRINT), 
LIN Bus Interrupt (LININT), Wake-up Interrupt (WKINT) and Auto-Baud Rate Interrupt (ABRINT). 
Interrupt enable register (UART_INTEN) enable or disable the responding interrupt and interrupt 
status register (UART_INTSTS) identifying the occurrence of the responding interrupt. 

The UART0 ~ UART9 are equipped 16-byte transmitter FIFO (TX_FIFO) and 16-byte receiver FIFO 
(RX_FIFO). The CPU can read the status of the UART at any time during the operation. The reported 
status information includes the type and condition of the transfer operations being performed by the 
UART, as well as 4 error conditions (parity error, framing error, break interrupt and buffer error) 
probably occur while receiving data.  

The UART controller supports wake-up system function. The wake-up function includes nCTS pin, 
incoming data wake-up, Received Data FIFO reached threshold wake-up, RS-485 Address Match 
(AAD mode) wake-up and Received Data FIFO threshold time-out wake-up function. CTSWKF 
(UART_WKSTS[0]), DATWKF (UART_WKSTS[1]), RFRTWKF (UART_WKSTS[2]), RS485WKF 
(UART_WKSTS[3]) or TOUTWKF (UART_WKSTS[4]) cause the wake-up interrupt flag 
WKIF(UART_INTSTS[6]) is generated. If the WKIEN (UART_INTEN[6]) is enabled, the wake-up 
interrupt flag WKIF(UART_INTSTS[6]) cause the wake-up interrupt WKINT (UART_INTSTS[14]) is 
generated. 

The UART controller includes a programmable baud rate generator capable of dividing clock input by 
divisors to produce the serial clock that transmitter and receiver need. Table 13.1-1 list the UART 
baud rate equations in the various conditions. Table 13.1-2 and Table 13.1-3 list the UART baud rate 
parameter and register setting example. In IrDA function mode, the baud rate generator must be set in 
mode 0. More detail register description is shown in UART_BAUD register. There are three setting 
mode. Mode 0 is set by UART_BAUD[29:28] with 00. Mode 1 is set by UART_BAUD[29:28] with 10. 
Mode 2 is set by UART_BAUD[29:28] with 11. 

The following tables list the UART baud rate equations in the various conditions and UART baud rate 
parameter settings. 

 

Mode BAUDM1 BAUDM0 Baud Rate Equation 

Mode 0 0 0 UART_CLK / [16 * (BRD+2)]. 

Mode 1 1 0 UART_CLK / [(EDIVM1+1) * (BRD+2)], EDIVM1 must >= 8. 

Mode 2 1 1 

UART_CLK / (BRD+2) 

If UART_CLK <= 3*HCLK, BRD must >= 9. 

If UART_CLK > 3*HCLK, BRD must >= 3*N – 1. 

N is the smallest integer larger than or equal to the ratio of 
UART_CLK /HCLK. 



 NUC980 

May 2, 2019  Page 93 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

For example,  

if 3*HCLK < UART_CLK =< 4*HCLK, BRD must >=11. 

if 4*HCLK < UART_CLK =< 5*HCLK, BRD must >=14. 

(If the UART_CLK is selected from LXT, BRD can be greater than 
or equal to 1) 

Table 13.1-1 UART controller Baud Rate Equation Table 

UART Peripheral Clock = 12 MHz 

Baud Rate Mode 0 Mode 1 Mode 2 

921600 Not support Not recommended BRD=11 

460800 Not recommended BRD=0, EDIVM1 =13 BRD=24 

230400 Not recommended BRD =2, EDIVM1 =13 BRD =50 

115200 Not recommended BRD =6, EDIVM1 =13 BRD =102 

57600 BRD =11 BRD =14, EDIVM1 =13 BRD =206 

38400 BRD =18 BRD =22, EDIVM1 =13 BRD =311 

19200 BRD =37 BRD =123, EDIVM1 =5 BRD =623 

9600 BRD =76 BRD =123, EDIVM1 =10 BRD =1248 

4800 BRD =154 BRD =248, EDIVM1 =10 BRD =2498 
 

Table 13.1-2 UART controller Baud Rate Parameter Setting Example Table 

UART Peripheral Clock = 12 MHz 

Baud Rate 
UART_BAUD Value 

Mode 0 Mode 1 Mode 2 

921600 Not support Not recommended 0x3000_000B 

460800 Not recommended 0x2D00_0000 0x3000_0018 

230400 Not recommended 0x2D00_0002 0x3000_0032 

115200 Not recommended 0x2D00_0006 0x3000_0066 

57600 0x0000_000B 0x2D00_000E 0x3000_00CE 

38400 0x0000_0012 0x2D00_0016 0x3000_0137 

19200 0x0000_0025 0x2500_007B 0x3000_026F 

9600 0x0000_004C 0x2A00_007B 0x3000_04E0 

4800 0x0000_009A 0x2A00_00F8 0x3000_09C2 

Table 13.1-3 UART controller Baud Rate Register Setting Example Table 

The UART controller supports baud rate compensation function. It is used to optimize the precision in 



 NUC980 

May 2, 2019  Page 94 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

each bit. The precision of the compensation is half of UART module clock because there is 
BRCOMDEC bit (UART_BRCOMP[31]) to define the positive or negative compensation in each bit. If 
the BRCOMPDEC (UART_BRCOMP[31]) = 0, it is positive compensation for each bit, one more 
module clock will be append in the compensated bit. If the BRCOMPDEC (UART_BRCOMP[31]) = 1, 
it is negative compensation for each bit, decrease one module clock in the compensated bit. 

There is 9-bits location, BRCOMP[8:0] (UART_BRCOMP[8:0]), can be configured by user to define 
the relative bit is compensated or not. BRCOMP[7:0] is used to define the compensation of 
UART_DAT[7:0] and BRCOMP[8] is used to define the parity bit 

The UART controllers support auto-flow control function that uses two low-level signals, CTSn (clear-
to-send) and RTSn (request-to-send) to control the flow of data transfer between the UART and 
external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data 
until the UART asserts RTSn (RTSn high) to external device. When the number of bytes in the RX-
FIFO equals the value of RTS_TRI_LEV (UA_FIFO [19:16]), the RTSn is de-asserted. The UART 
sends data out when UART controller detects CTSn is asserted (CTSn high) from external device. If a 
valid asserted CTSn is not detected the UART controller will not send data out.  

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (The IrDA mode is 
selected by setting the (FUNCSEL(UART_FUNCSEL[2:0]) = 010) to select IrDA function). The SIR 
specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 
8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block 
contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it 
cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 
10ms transfer delay between transmission and reception. This delay feature must be implemented by 
software. 

For the NUC980 series, another alternate function of UART controllers is RS-485 9-bit mode function, 
and direction control provided by RTS pin to implement the function by software. The RS-485 mode is 
selected by setting the (FUNCSEL(UART_FUNCSEL[2:0]) = 011) to select RS-485 function. The RS-
485 driver control is implemented using the RTS control signal from an asynchronous serial port to 
enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are the same as 
UART. 

The alternate function of UART controllers is LIN (Local Interconnect Network) function. The LIN mode 
is selected by setting the (FUNCSEL(UART_FUNCSEL[2:0]) = 001) to select LIN mode. In LIN mode, 
one start bit and 8-bit data format with 1-bit stop bit are required in accordance with the LIN standard. 

13.2 Features 

 Full-duplex asynchronous communications 

 Separates receive and transmit 16/16 bytes entry FIFO for data payloads 

 Supports hardware auto-flow control 

 Programmable receiver buffer trigger level 

 Supports programmable baud rate generator for each channel individually 

 Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485 
Address Match (AAD mode) wake-up function  

 Supports 8-bit receiver buffer time-out detection function 

 Programmable transmitting data delay time between the last stop and the next start bit by 
setting DLY (UART_TOUT [15:8]) 

 Supports Auto-Baud Rate measurement and baud rate compensation function 

 Support 9600 bps for UART_CLK is selected LXT. 

 Supports break error, frame error, parity error and receive/transmit buffer overflow 
detection function 



 NUC980 

May 2, 2019  Page 95 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Fully programmable serial-interface characteristics 

 Programmable number of data bit, 5-, 6-, 7-, 8- bit character 

 Programmable parity bit, even, odd, no parity or stick parity bit generation and detection 

 Programmable stop bit, 1, 1.5, or 2 stop bit generation 

 Supports IrDA SIR function mode 

 Supports for 3/16 bit duration for normal mode 

 Supports LIN function mode (Only UART1 /UART2 with LIN function) 

 Supports LIN master/slave mode 

 Supports programmable break generation function for transmitter 

 Supports break detection function for receiver 

 Supports RS-485 function mode 

 Supports RS-485 9-bit mode 

 Supports hardware or software enables to program nRTS pin to control RS-485 
transmission direction 

 Supports PDMA transfer function 

13.3 Block Diagram 

 

 

11 

10 

01 

00 

ACLK 

XIN 

UCLK 

UARTn_S 

 UART0_EN(CLK_PCLKEN0[16]) 

UART 0 _ CLK 

1/(UARTn_N+1) 

UART 1 _ CLK 

UART 9 _ CLK 
Legend : 
XIN  = 12 MHz external high speed crystal oscillator 

LXT  = 32 KHz external low speed crystal oscillator 

(n=0~9) 

(n=0~10) 

LXT 

UART1_EN(CLK_PCLKEN0[17]) 

 

UART9_EN(CLK_PCLKEN0[25]) 

 

 

Figure 13.3-1 UART Clock Source 

 



 NUC980 

May 2, 2019  Page 96 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

Figure 13.3-2 UART Block Diagram 

 

 

  

APB_BUS

UART / IrDA / LIN / RS-485 Device or Transceiver

UART_CLK
IrDA Decode

RX Shift Register

RX_FIFOTX_FIFO

TX Shift Register

IrDA Encode

Baud Rate

Generator

Control and Status 

Registers

Serial Data InSerial Data Out

Baud OutBaud Out

Status & Control Status & Control 



 NUC980 

May 2, 2019  Page 97 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

13.4 Functional Description 

 Initializations 

Before the transfer operation starts, the serial interface of UART must be programmed. The driver 
should set the baud rate, parity bit, data bit and stop bit. If the transfer operation is done triggered by 
interrupt, the TX, RX and RLS interrupts need to be enabled.  

Start

Set Baud Rate

Set parity bit , Data bits, and 

Stop bit

Set Rx FIFO Trigger Level

Reset Tx, Rx FIFO

Set Time-Out Register

Enable Tx, Rx, RLS interrupt

End

1. Write BRD, DIVIDER_X, DIV_X_ONE,

    DIV_XEN to decide baud rate

LINE Control Registers

6 BCB : Break Control Bit

5 SPE : Stick Parity Bit

4 EPE : Even Parity Enable

3 PBE : Parity Bit Enable

2 NSB : Number of "STOP" bit

0 One "STOP" bit

1 1.5 "STOP" bit

1:0 WLS : Word Length Select

00 5 bits

01 6 bits

10 7 bits

11 8 bits

FIFO Control Register

7:6 RFITL : Rx FIFO Interrupt Trigger Level

             UART0~9                     

0000 1 Byte                  

0001 4 Bytes                

0010 8 Bytes                

0011 14 Bytes              

2 TXRS : Tx FIFO Reset

1 RXRS : Rx FIFO Reset

INTEN Register

4           RTOIEN: Rx Time-out Interrupt Enable

3 MODEMIEN : Modem Status Interrupt Enable

2 RLSIEN : Receive Line Status Interrupt Enable

1 THREIEN : Transmit Holding Register Empty Interrupt Enable

0 RDAIEN : Receive Data Available Interrupt Enable .

INTEN Register

11         TIME_OUT_EN: Time-out counter Enable

TOUT Register

7:0 TOIC: Counter for Timeout (unit by baudrate)

 

Figure 13.4-1 UART Initialization Flow 

 IrDA Mode 

The UART Controller provides Serial IrDA (SIR, Serial Infrared) transmit encoder and receive decoder 



 NUC980 

May 2, 2019  Page 98 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

function. The IrDA_EN(UART_FUNCSEL[2:0] = 010) bit are used to select IrDA function.  

In IrDA Operation mode, the receive FIFO trigger level must be “1” by setting RFITL(UART_FIFO[7:4]) 
= 0000 and the BAUDM1(UART_BAUD[29]) bit must be disabled in IrDA mode operation (Mode 1). 

Baud Rate = Clock / (16 * BRD ), where BRD is Baud Rate Divider in BRD(UART_BAUD[15:0]). 

The IrDA SIR Encoder/Decoder provides functionality which converts between UART data stream and 
half duplex serial SIR interface. 

Programming Sequence Example: 

1. Set IrDA_EN(UART_FUNCSEL[2:0] = 010) =1, to select IrDA function. 

2. Set TXINV(UART_IRDA[5]) = 0. (Not inverse TX output signal) 

3. Set RXINV(UART_IRDA[6]) = 1. (Inverse RX input signal) 

4. Setting TX_SELECT (UART_IRDA [2]) to select half- tandem as TX or RX.  

 TXEN(UART_IRDA[2]) = 1  select TX. 

 TXEN(UART_IRDA[2]) = 0  select RX. 

 RS485 Function Mode 

The UART supports RS-485 9-bit mode function. The RS-485 mode is selected by setting the 
FUNCSEL(UART_FUNCSEL[2:0]) to select RS-485 function. The RS-485 driver control is 
implemented using the RTS control signal from an asynchronous serial port to enable the RS-485 
driver. In RS-485 mode, many characteristics of the RX and TX are same as UART. 

In RS-485 mode, the bit 9 will be configured as address bit. The controller can configuration of it as an 
RS-485 addressable slave and the RS-485 master transmitter will identify an address character by 
setting the parity (9th bit) to 1.  

For data characters, the bit 9 is set to “0”. Software can use UART_LINE register to control the 9-th bit 
(When the PBE(UART_LINE[3]), EPE(UART_LINE[4]) and SPE(UART_LINE[5]) are set, the 9-th bit is 
transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1). 

The Controller support three operation mode that is RS-485 Normal Multi-drop Operation Mode 
(NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control 
Operation Mode (AUD), software can choose any operation mode by programming UART_ALTCTL 
register, and software can driving the transfer delay time between the last stop bit leaving the TX-FIFO 
and the de-assertion of by setting DLY(UART_TOUT [15:8]). 

 RS-485 Normal Multidrop Operation Mode (NMM) 

In RS-485 Normal Multi-drop operation mode, software must decide whether receiver will ignore data 
before an address byte is detected (bit 9 = “1”). 

If software wants to receive any data before address byte detected, the flow is disable 
RXOFF(UART_FIFO [8]) then enable RS485NMM(UART_ALTCTL[8]) and the receiver will received 
any data. If an address byte is detected (bit9 =1), it will generator an interrupt to CPU and software 
can decide whether enable or disable receiver to accept the following data byte by setting RXOFF.  

When an address byte be detected (bit 9 = “1”) by hardware, the address byte data will be stored in 
the RX-FIFO. If the receiver is be enabled (RXOFF(UART_FIFO[8]) is low, all received byte data will 
be accepted and stored in the RX-FIFO, and if the receiver is disabled (RXOFF(UART_FIFO[8]) is 
high, all received byte data will be ignore until the next address byte be detected.  

If software disable receiver by setting (RXOFF(UART_FIFO[8]) bit, when a next address byte be 
detected, the controller will clear the RX_DIS bit and the address byte data will be stored in the RX-
FIFO. 

Program Sequence Example： 



 NUC980 

May 2, 2019  Page 99 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

1. Program FUNCSEL(UART_FUNCSEL[2:0]) to select RS-485 function. 

2. Program the RXOFF(UART_FIFO[8]) bit to determine whether to store the received data 
before an address byte is detected (bit 9 = “1”). 

3. Program the RS485_NMM by setting RS485NMM(UART_ALTCTL[8]). 

4. When an address byte is detected (bit 9 = “1”), hardware will set RLSIF(UART_INTSTS[2]) 
and ADDRDETF(UART_FIFOSTS[3]) flag. 

5. Software can decide whether to accept the following data byte by setting 
RXOFF(UART_FIFO[8]). 

6. Repeat step 4 and step 5. 

 RS-485 Auto Address Detection Operation Mode (AAD) 

In RS-485 Auto Address Detection Operation Mode, the receiver will ignore any data until an address 
byte is detected (bit9 =1) and the address byte data match the ADDRMV(UART_ALTCTL[31:24]) 
value. The address byte data will be stored in the RX-FIFO. The all received byte data will be 
accepted and stored in the RX-FIFO until and address byte data not match the 
ADDRMV(UART_ALTCTL[31:24]) value. In RS-485 AAD mode, don‟t fill any value to 
RXOFF(UART_FIFO[8]) bit. 

Program Sequence example： 

1. Program FUNCSEL(UART_FUNCSEL[1:0]) to select RS-485 function. 

2. Program the RS485AAD(UART_ALTCTL[9]). 

3. When an address byte is detected (bit9 = “1”), hardware will compare the address byte and 
the ADDRMV (UART_ALTCTL[31:24]) value. 

4. If the address byte matches the ADDRMV(UART_ALTCTL[31:24]) value, hardware will set 
RLSIF(UART_INTSTS[2]) and ADDRDETF(UART_FIFOSTS[3]). And the receiver will sorted 
address byte to FIFO and accept the following data transfer and stored data in FIFO until next 
address byte be detected. 

5. However if the address byte does not match the ADDRMV(UA_ALTCTL[31:24]) value, 
hardware will ignored the address byte data and ignored the following data transfer. 

6. Respect step 3 and step 4. 

 RS-485 Auto Direction Mode (AUD) 

Another option function of RS-485 controllers is RS-485 auto direction control function. The RS-485 
driver control is implemented using the RTS control signal from an asynchronous serial port to enable 
the RS-485 driver. The RTS line is connected to the RS-485 driver enable such that setting the RTS 
line to high (logic 1) enables the RS-485 driver. Setting the RTS line to low (logic 0) puts the driver into 
the tri-state condition. User can setting RTSACTLV(UART_MODEM[9]) to change the RTS driving 
level. 

 LIN (Local Interconnection Network) Mode 

The UART supports LIN function. The LIN mode is selected by setting the 
(FUNCSEL(UART_FUNCSEL[2:0]) = 001).  

According to the LIN protocol, all information is transmitted packed as frames; a frame consist 
(provided by the master task) a header and a response (provided by a slave task). That is any 
communication on the LIN bus is started by the master sending a header, followed by the response. 
The header (provided by the master task) consists of a break field and sync field followed by a frame 
identifier (frame ID). The frame identifier uniquely defines the purpose of the frame. The slave task 
appointed for providing the response associated with the frame ID and the response consists of a data 
field and a checksum field. The following diagram is the structure of LIN function mode. 



 NUC980 

May 2, 2019  Page 100 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Data 1 Data 2 Data N Check 
Sum

Protected 
Identifier

Field

Header

Response 

space
Response

Inter -

frame 

space

Frame

Frame Slot

Synch
Field

Break
Field

 

Figure 13.4-2 UART LIN Mode 

 LIN Transmission (TX) Program Sequence： 

1. Select LIN function mode by setting UART_FUNCSEL register 

2. Select Break filed and Delimiter Length by setting BRKFL(UART_LINCTL[19:16]) and 
BSL(UART_LINCTL[21:20]).  

3. Set SENDH(UART_LINCTL[8]) to start transfer. (When transmitter header field (it may be 
“break” or “break + sync” or “break + sync + frame ID” selected by 
HSEL(UART_LINCTL[23:22]) field) transfer operation finished, this bit will be cleared 
automatically).  

4. Request sync field transmission by writing 0x55 into UART_DAT register. 

5. Request header frame ID transmission by writing the protected identifier value in the 
UART_DAT register. 

6. Wait for the TXEMPTYF(UART_FIFOSTS[28]) flag 

7. Write N bytes data and checksum value to UART_DAT register. Repeat step 5 and step 6. 

 LIN Receive(RX) Program Sequence： 

1. Select LIN function mode by setting UART_FUNCSEL register 

2. Set SLVEN(UART_ALTCTL[0]) = 1 to enable LIN Slave mode 

3. Wait BRKDETF(UART_LINSTS[8]) flag. (This bit is set by hardware when a break is 
detected). 

4. Wait for the RDAIF(UART_INTSTS[0]) flag and read back the UART_DAT register 

 

 PDMA Transfer Function 

The UART controller supports PDMA transfer function.  

By configuring PDMA parameter and set UART_DAT as the PDMA destination address. When 
TXPDMAEN (UART_INTEN[14]) is set to 1, the controller will issue request to PDMA controller to start 
the PDMA transmission process automatically. 

By configuring PDMA parameter and set UART_DAT as the PDMA source address. When 
RXPDMAEN (UART_INTEN[15]) is set to 1, the controller will start the PDMA reception process. 
UART controller will issue request to PDMA controller automatically when there is data in the RX FIFO 
buffer. 

Note: If STOPn (PDMA_STOP[n]) is set to stop UART RXPDMA task and the UART receive is not 
finish. UART controller will complete the transfer and stored current receive data in receive buffer. By 



 NUC980 

May 2, 2019  Page 101 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

reading RXEMPTY (UART_FIFOSTS[14]) to check there is valid data in receive buffer or not. 

 

 UART Controller Wake-up Function 

The UART controller supports wake-up system function. The wake-up function includes nCTS pin, 
incoming data wake-up, Received Data FIFO reached threshold wake-up, RS-485 Address Match 
(AAD mode) wake-up and Received Data FIFO threshold time-out wake-up function. CTSWKF 
(UART_WKSTS[0]), DATWKF (UART_WKSTS[1]), RFRTWKF (UART_WKSTS[2]), RS485WKF 
(UART_WKSTS[3]) or TOUTWKF (UART_WKSTS[4]) cause the wake-up interrupt flag 
WKIF(UART_INTSTS[6]) is generated. If the WKIEN (UART_INTEN[6]) is enabled, the wake-up 
interrupt flag WKIF(UART_INTSTS[6]) cause the wake-up interrupt WKINT (UART_INTSTS[14]) is 
generated. 

nCTS pin wake-up :  

When the system is in Power-down mode and WKCTSEN (UART_WKCTL[0]) is set, the toggle of 
nCTS pin can wake-up system. If the WKCTSEN (UART_WKCTL[0]) is enabled, the toggle of nCTS 
pin cause the nCTS wake-up flag CTSWKF (UART_WKSTS[0]) is generated. The nCTS wake-up is 
shown in Figure 13.4-3 and Figure 13.4-4. 

nCTS Wake-up Case 1 (nCTS transition from low to high) 

Power-down mode

HCLK

nCTS

CTSWKF

stable count CPU run

CTSACTLV (UART_MODEMSTS[8]) = 0  

Note: Stable count means HCLK source recovery stable count. 

Figure 13.4-3 UART nCTS Wake-up Case1 

nCTS Wake-up Case 2 (nCTS transition from high to low) 

Power-down mode

HCLK

nCTS

stable count CPU run

CTSACTLV (UART_MODEM[8]) = 1

CTSWKF

 

Note: Stable count means HCLK source recovery stable count. 

Figure 13.4-4 UART nCTS Wake-up Case2 

 Incoming Data Wake-up  

When system is in Power-down mode and the WKDATEN (UART_WKCTL [1]) is set, the toggle of 
incoming data (UART_RXD) pin can wake-up the system. In order to receive the incoming data after 
the system wake-up, the STCOMP (UART_DWKCOMP[15:0]) shall be set. These bits field of 
STCOMP indicate how many clock cycle selected by UART_CLK do the UART controller can get the 
1st bit (start bit) when the system is wakeup from Power-down mode. 



 NUC980 

May 2, 2019  Page 102 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

When incoming data wakes system up, the incoming data will be received and stored in FIFO. If the 
WKDATEN (UART_WKCTL[1]) is enabled, the toggle of incoming data (UART_RXD) pin cause the 
incoming data wake-up flag DATWKF (UART_WKSTS[1]) is generated. The imcoing data wake-up is 
shown in Figure 13.4-5. 

Note1: The UART controller clock source should be selected as HIRC and the compensation time for 
start bit is about 10.865us. It means that the value of STCOMP (UART_DWKCOMP[15:0]) can be set 
as 0x207. 

Note2: The value of BRD(UART_BAUD[15:0]) should be greater than STCOMP 
(UART_DWKCOMP[15:0]). 

Power-down mode

UART_CLK

UART_RXD

DATWKF

UART_CLK stable count

CPU run

start

HCLK

stable count

 

Note1: Stable count means HCLK source recovery stable count. 

Note2: UART_CLK stable count means UART clock source recovery stable count. 

Figure 13.4-5 UART Data Wake-up 

 Received Data FIFO Reached Threshold Wake-up 

The received data FIFO threshold reached wake-up function is enabled by setting WKRFRTEN 
(UART_WKCTL[2]). In Power-down mode, when the number of received data in RX FIFO reaches the 
threshold value RFITL (UART_FIFO[7:4]), it can wake-up the system. If the WKRFRTEN 
(UART_WKCTL[2]) is enabled, the number of received data in RX FIFO reaches the threshold value 
RFITL (UART_FIFO[7:4]) cause the received data FIFO reached threshold wake-up flag RFRTWKF 
(UART_WKSTS[2]) is generated. The Received Data FIFO reached threshold wake-up is shown in 
Figure 13.4-6. 

Note: The UART controller clock source should be selected as LXT in Power-down mode to receive 
data. 

Power-down mode

HCLK

RFRTWKF

Start DATA0 DATA1

RX FIFO number reached RFITL

UART_RXD DATAx

stable 

count

 

Note: Stable count means HCLK source recovery stable count. 

Figure 13.4-6 UART Received Data FIFO reached threshold wake-up 

 RS-485 Address Match (AAD Mode) Wake-up 

The RS-485 address match wake-up function is enabled by setting WKRFRTEN (UART_WKCTL[2]) 
and WKRS485EN (UART_WKCTL[3]). This function is used for RS-485 Auto Address Detection 
(AAD) mode in RS-485 function mode and ADDRDEN (UART_ALTCTL[15]) is set to 1. In Power-
down mode, when an address byte is detected and matches the ADDRMV (UART_ALTCTL[31:24]) or 



 NUC980 

May 2, 2019  Page 103 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

the number of received data in RX FIFO reaches the threshold value RFITL (UART_FIFO[7:4]), it can 
wake-up the system. If the WKRS485EN (UART_WKCTL[3]) is enabled, when an address byte is 
detected and matches the ADDRMV (UART_ALTCTL[31:24]) that cause the RS485 address match 
(AAD mode) wake-up flag RS485WKF (UART_WKSTS[3]) is generated. The RS-485 Address Match 
(AAD mode) wake-up is shown in Figure 13.4-7. 

Note: The UART controller clock source should be selected as LXT in Power-down mode to receive 
data. 

HCLK

Start D0~ D7 ADD

Address Match

Power-down mode

RS485WKF

UART_RXD STO

stable count

 

Note: Stable count means HCLK source recovery stable count. 

Figure 13.4-7 UART RS-485 AAD Mode Address Match Wake-up 

 Received Data FIFO Threshold Time-out Wake-up  

The received data FIFO threshold time-out wake-up function is enabled by setting WKRFRTEN 
(UART_WKCTL[2]) and WKTOUTEN (UART_WKCTL[4]). Setting TOCNTEN (UART_INTEN[11]) to 
enable receiver buffer time-out counter. In Power-down mode, when the number of received data in 
RX FIFO does not reach the threshold value RFITL (UART_FIFO[7:4]) and the time-out counter 
equals to the time-out value TOIC (UART_TOUT[7:0]), it can wake-up the system. If the WKTOUTEN 
(UART_WKCTL[4]) is enabled, when the time-out counter equals to the time-out value TOIC 
(UART_TOUT[7:0]) that cause the Received Data FIFO threshold time-out wake-up wake-up flag 
TOUTWKF (UART_WKSTS[4]) is generated. The Received Data FIFO threshold time-out wake-up is 
shown in Figure 13.4-8. 

Note: The UART controller clock source should be selected as LXT in Power-down mode to receive 
data. 

Power-down mode

HCLK

TOUTWKF

Start DATA0

RX FIFO number not reached 

RFITL and Time-out

UART_RXD Time-out

stable count

DATAx

 

Note: Stable count means HCLK source recovery stable count. 

Figure 13.4-8 UART Received Data FIFO threshold time-out wake-up 

 

  



 NUC980 

May 2, 2019  Page 104 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

13.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

UART Base Address :  

Channel0 : UART0_BA = 0xB007_0000 

Channel1 : UART1_BA = 0xB007_1000 

Channel2 : UART2_BA = 0xB007_2000 

Channel3 : UART3_BA = 0xB007_3000 

Channel4 : UART4_BA = 0xB007_4000 

Channel5 : UART5_BA = 0xB007_5000 

Channel6 : UART6_BA = 0xB007_6000 

Channel7 : UART7_BA = 0xB007_7000 

Channel8 : UART8_BA = 0xB007_8000 

Channel9 : UART9_BA = 0xB007_9000 

UART_DAT UART_BA+0x00 R/W UART Receive/Transmit Buffer Register Undefined 

UART_INTEN UART_BA+0x04 R/W UART Interrupt Enable Register 0x0000_0000 

UART_FIFO UART_BA+0x08 R/W UART FIFO Control Register 0x0000_0101 

UART_LINE UART_BA+0x0C R/W UART Line Control Register 0x0000_0000 

UART_MODEM UART_BA+0x10 R/W UART Modem Control Register 0x0000_0200 

UART_MODEMSTS UART_BA+0x14 R/W UART Modem Status Register 0x0000_0110 

UART_FIFOSTS UART_BA+0x18 R/W UART FIFO Status Register 0xB040_4000 

UART_INTSTS UART_BA+0x1C R/W UART Interrupt Status Register 0x0040_0002 

UART_TOUT UART_BA+0x20 R/W UART Time-out Register 0x0000_0000 

UART_BAUD UART_BA+0x24 R/W UART Baud Rate Divisor Register 0x0F00_0000 

UART_IRDA UART_BA+0x28 R/W UART IrDA Control Register 0x0000_0040 

UART_ALTCTL UART_BA+0x2C R/W UART Alternate Control/Status Register 0x0000_000C 

UART_FUNCSEL UART_BA+0x30 R/W UART Function Select Register 0x0000_0000 

UART_LINCTL UART_BA+0x34 R/W UART LIN Control Register 0x000C_0000 

UART_LINSTS UART_BA+0x38 R/W UART LIN Status Register 0x0000_0000 

UART_BRCOMP UART_BA+0x3C R/W UART Baud Rate Compensation Register 0x0000_0000 

UART_WKCTL UART_BA+0x40 R/W UART Wake-up Control Register 0x0000_0000 

UART_WKSTS UART_BA+0x44 R/W UART Wake-up Status Register 0x0000_0000 

UART_DWKCOMP UART_BA+0x48 R/W UART Incoming Data Wake-up Compensation Register 0x0000_0000 

 



 NUC980 

May 2, 2019  Page 105 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

14 SMART CARD HOST INTERFACE (SC) 

14.1 Overview 

The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully 
compliant with PC/SC Specifications. It also provides status of card insertion/removal. 

14.2 Features 

 ISO-7816-3 T = 0, T = 1 compliant  

 EMV2000 compliant  

 Up to two ISO-7816-3 ports  

 Separates receive/transmit 4 byte entry FIFO for data payloads  

 Programmable transmission clock frequency  

 Programmable receiver buffer trigger level  

 Programmable guard time selection (11 ETU ~ 267 ETU)  

 A 24-bit and two 8-bit timers for Answer to Request (ATR) and waiting times processing  

 Supports auto inverse convention function  

 Supports transmitter and receiver error retry and error number limiting function  

 Supports hardware activation sequence, hardware warm reset sequence and hardware 
deactivation sequence process  

 Supports hardware auto deactivation sequence when detected the card removal  

 Supports UART mode  

– Full duplex, asynchronous communications  

– Separates receiving / transmitting 4 bytes entry FIFO for data payloads  

– Supports programmable baud rate generator for each channel  

– Supports programmable receiver buffer trigger level  

– Programmable transmitting data delay time between the last stop bit leaving the TX-
FIFO and the de-assertion by setting EGT (SC_EGT[7:0])  

– Programmable even, odd or no parity bit generation and detection  

– Programmable stop bit, 1- or 2- stop bit generation  

  



 NUC980 

May 2, 2019  Page 106 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

14.3 Block Diagram 

TX_FIFOTX/RX Control UnitRX_FIFO

TX Shift Register

ETU Clock Generator

RX Shift Register
SC_ DATA

SC_ DATA_EN

SC_CD

SC_PWR

APB_BUS

SC_RST

SC_CLK
Card Detect

Card Detect  & ETU

Clock Generator & 

SC_DATA Direction & 

SC_PWR & SC_RST

Control Signal Unit

 

Figure 14.3-1 Smart Card Host Interface Block Diagram 

  



 NUC980 

May 2, 2019  Page 107 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

14.4 Functional Description 

This section describes the control of smartcard interface. But the content of ISO7816 and EMV is not 
in the scope of this document. A smartcard control flow is shown in the figure below. It is highly 
suggested to have basic knowledge of ISO7816 and EVM specification before develop smartcard 
driver. 

Start

End

Init system clock

Receive ATR?

Configure SC function pin

Insert smart card

Activation sequence

Warm reset

Application

Deactivation sequence

Card removal

Card inertion?
NoNo

In specific mode?

Negotiabled transmission 
protocol

NoNo

YesYes

YesYes

YesYes

Check parameter ok?
NoNo

YesYes

No

 

Figure 14.4-1 Smart Card Activate/Deactive Flow 

 Activation (Cold Reset) 

The Smart Card Interface controller supports hardware activation, warm reset and deactivation 
sequence. The activation sequence is shown as follows: 

 Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.  

 Set SC_PWR at high level by programming PWRSTS (SC_PINCTL[18]) to 1 and 
SC_DAT at high level (reception mode) by programming DATSTS (SC_PINCTL[16]) to 1.  

 Enable SC_CLK clock by programming CLKKEEP (SC_PINCTL[6]) to 1.  



 NUC980 

May 2, 2019  Page 108 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 De-assert SC_RST to high by programming RSTSTS (SC_PINCTL[18]) to 1.  

The activation sequence can be controlled in two ways. The procedure is shown as follows:  

Software Timing Control: 

Set SC_PINCTL and SC_TMRCTLx (x = 0, 1, 2) to process the activation sequence. SC_PWR, 
SC_CLK, SC_RST and SC_DATA pin state can be programmed by SC_PINCTL. The programming 
method is shown in Activation description. The activation sequence timing can be controlled by setting 
SC_TMRCTLx (x = 0, 1, 2). This programming procedure provides user has a flexible timing setting for 
activation sequence 

Hardware Timing Control: 

Set ACTEN (SC_ALTCTL[3]) to 1 and the interface will perform the activation sequence by hardware. 
The SC_PWR to SC_CLK start (T1) and SC_CLK start to SC_RST assert (T2) can be selected by 
programming INITSEL(SC_ALTCTL[9:8]). The SCn_PWR to SCn_CLK length can be configure by 
setting T1EXT(SCn_ACTCTL[4:0]). This programming procedure provides user has a simple setting 
for activation sequence. 

Following is the activation control sequence generated by hardware: 

1. Set activation timing by setting INITSEL (SC_ALTCTL[9:8]).  

2. TMR0 can be selected by setting TMRSEL (SC_CTL[14:13]) is 01, 10 or 11.  

3. Set operation mode OPMODE (SC_TMRCTL0[27:24]) to 0011 and give an Answer to Request 
(ATR) value by setting CNT (SC_TMRCTL0[23:0]) register.  

4. When hardware de-asserts SC_RST to high, hardware will generator an interrupt INTIF 
(SC_INTSTS[8]) to CPU at the same time INITIEN (SC_INTEN[8]) = 1.  

5. If the TMR0 decreases the counter to “0” (start from SC_RST de-assert) and the card does not 
response ATR before that time, hardware will generate interrupt TMR0IF (SC_INTSTS[3]) to 
CPU.  

Undefined ATR 

Time

T1

Comment

00 85

133

165

165

489

537

569

42060

Unit : SC Clock

 

T2

T3

T1

01

10

11

T2

Note : The values are measured by chip I/O pin and the real value will depend on system design

SC_PWR

SC_CLK

SC_RST

SC_DATA

INITF set

T1 T2 T3

 SC_CLK Start to SC_RST Assert

SC_PWR to SC_CLK Start

 SC_CLK Start to ATR Appear

INITSEL

 

Figure 14.4-2 Smart Card Cold Reset Timing 

 Warm Reset 

The warm reset sequence is showed as follows.  

1. Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.  

2. Set SC_DAT to high by programming DATSTS (SC_PINCTL[16]) to 1.  



 NUC980 

May 2, 2019  Page 109 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Set SC_RST to high by programming RSTSTS (SC_PINCTL[18]) to 1.  

The warm reset sequence can be controlled in two ways. The procedure is shown as follows.  

Software Timing Control:  

Set SC_PINCTL and SC_TMRCTLx (x = 0, 1, 2) to process the warm reset sequence. SC_RST and 
SC_DATA pin state can be programmed by SC_PINCTL. The warm reset sequence timing can be 
controlled by setting SC_TMRCTLx (x = 0, 1, 2). This programming procedure provides user has a 
flexible timing setting for warm reset sequence. 

Hardware Timing Control: 

Set WARSTEN (SC_ALTCTL[4]) to 1 and the interface will perform the warm reset sequence by 
hardware. The SC_RST to SC_DATA reception mode (T4) and SC_DATA reception mode to SC_RST 
assert (T5) can be selected by programming INITSEL (SC_ALTCTL[9:8]). This programming 
procedure provides user has a simple setting for warm reset sequence. 

 Following is THE warm reset control sequence by hardware:  

1. Set warm reset timing by setting INITSEL (SC_ALTCTL[9:8]).  

2. Select TMR0 by setting TMRSEL (SC_CTL[14:13]) register (TMRSEL can be set to 01, 10, or 
11).  

3. Set operation mode OPMODE (SC_TMRCTL0[27:24]) to 0011 and give an Answer to Request 
value by setting CNT (SC_TMRCTL0[23:0]) register.  

4. SetCNTEN0 (SC_ALTCTL[5]) and WARSTEN (SC_ALTCTL[4]) to start counting.  

5. When hardware de-asserts SC_RST to high, hardware will generate an interrupt INTIF 
(SC_INTSTS[8]) to CPU at the same time (INITIEN (SC_INTEN[8]) = 1).  

6. If the TMR0 decrease the counter to “0” (start from SC_RST) and the card does not response 
ATR before that time, hardware will generate interrupt TMR0IF (SC_INTSTS[3]) to CPU  

 

Undefined
T6

ATR 

T4 T5

T4

CommentTime 00

01

10

11

81

129

161

161

483

531

563

42106

T4

Unit : SC Clock
T5

T6

T5

SC_RST

SC_ DATA

INITF set

Note : This value is measured by chip IO pin and the real value will depend on system design

SC_RST to SC_DATA Reception Mode

SC_DATA Reception Mode to SC_RST Assert

SC_CLK Start to ATR Appear

INITSEL

 

Figure 14.4-3 Smart Card Warm Reset Timeing 

 Deactivation 

 The deactivation sequence is showed as follows:  

1. Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.  

2. Stop SC_CLK by programming CLKKEEP (SC_PINCTL[6]) to 0.  



 NUC980 

May 2, 2019  Page 110 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Set SC_DATA to state low by programming DATSTS (SC_PINCTL[16]) to 0.  

4. Deactivate SC_PWR by programming PWRSTS (SC_PINCTL[18]) to 0.  

The deactivation sequence can be controlled in two ways. The procedure is shown as follows.  

Software Timing Control:  

Set SC_PINCTL and SC_TMRCTL0 to process the deactivation sequence. SC_PWR, SC_CLK, 
SC_RST and SC_DATA pin state can be programmed by SC_PINCTL. The deactivation sequence 
timing can be controlled by setting SC_TMRCTL0. This programming procedure provides user has a 
flexible timing setting for deactivation sequence. 

Hardware Timing Control: 

DACTEN (SC_ALTCTL[2]) to ‘1’ and the interface will perform the deactivation sequence by hardware. 
The Deactivation Trigger to SC_RST low (T7), SMC_RST low to SC_CLK (T8) and stop SC_CLK to 
stop SC_PWR (T9) time can be selected by programming INITSEL (SC_ALTCTL[9:8]). This 
programming procedure provides user has a simple setting for deactivation sequence. 

The SC controller also supports auto deactivation sequence when the card removal detection is 
enabled by setting ADAC_CDEN (SC_ALTCTL[11]). 

Undefined

Time Comment

00

01

10

11

97

145

177

177

83 87

131 135

163 167

163 167
Unit: SC Clock

T9T7 T8

T7

T8

T9

T7 T8 T9

SC_PWR

SC_CLK

SC_RST

SC_DATA

INITF set

Deactivation Trigger to SC_RST Low

SMC_RST Low to Stop SC_CLK

Stop SC_CLK to Stop SC_PWR

INITSEL

 

Figure 14.4-4 Smart Card Deactivation Timing 

 Data Format 

Basically, the smart card interface acts as a half-duplex asynchronous communication port and its 
data format is composed of ten consecutive bits, which is show as follows. 

Start Pause StartD1

Delay Between Consecutive Characters

D2 D3 D4 D5 D6 D7 D8 P

 

Figure 14.4-5 Smart Card Character Format 

According to 7816-3, the initial character TS has two possible patterns shown in the following figure. If 
the TS pattern is 1100_0000, it is inverse convention. When decoded by inverse convention, the 
conveyed byte is equal to 0x3F. If the TS pattern is 1101_1100, it is direct convention. When decoded 
by direct convention, the conveyed byte is equal to 0x3B. Software can set AUTOCEN (SC_CTL[3]) 
and then the operating convention will be decided by hardware. Software can also set the CONSEL 
(SC_CTL[5:4]) register (set to „00‟ or „11‟) to change the operating convention after SC received TS of 
answer to request (ATR).  

If auto convention function is enabled by setting AUTOCEN (SC_CTL[3]) register, the setting step 
must be done before Answer to Request state and the first data must be 0x3B or 0x3F. After hardware 



 NUC980 

May 2, 2019  Page 111 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

received first data and stored it at buffer, the hardware will decided the convention and change the 
CONSEL (SC_CTL[5:4]) register automatically. If the first data is neither 0x3B nor 0x3F, the hardware 
will generate an interrupt (if ACERRIEN (SC_INTEN[10]) = „1‟) to CPU. 

Start StartD1 P Character T0

Inverse Convention
Start StartP Character T0

Direct Convention

Inverse Convention

Direct Convention

t  = 12 ~ 9600 ETU

t  = 12 ~ 9600 ETU

D2 D3 D4 D5 D6 D7 D8

D1 D2 D3 D4 D5 D6 D7 D8

0_1101_1100_1 (0x3B)

0_1100_0000_1 (0x3F)

 

Figure 14.4-6 Smart Card Convention 

 Data Transfer 

Smartcard interface transmit and receive data through SC_DAT register. Driver should write output 
data to SC_DAT register, and read received data from SC_DAT. 

Both transmit (TX) and receive (RX) has 4 level FIFO. Driver must make sure TX FIFO is not full 
(TXFULL (SC_STATUS[10]) is 0) before write any data to SC_DAT. Otherwise 
TXOV(SC_STATUS[8]) will be set 1 to indicate TX FIFO overflow. While there’s data available in RX 
FIFO, RXEMPTY (SC_STATUS[1]) will be cleared to 0, driver can keep read SC_DAT until RXEMPTY 
(SC_STATUS[1]) set 1 again. If RX FILL is FULL and further data comes in, RXOV(SC_STATUS[0]) 
will be set 1 to indicate RX FIFO overflow. 

Except polling mode, driver can use interrupt to detect the status change of TX/RX FIFO. If TBEIEN 
(SC_INTEN[1]) set 1, interrupt will be triggered when TX FIFO is empty, and TBEIF (SC_INTSTS[1]) 
will be set to 1. Driver can repeatedly write at most 4 bytes data into TX FIFO until next interrupt. If 
RDAIEN (SC_INTEN[0]) is 1, interrupt will be triggered if data in RX FIFO is no less then the interrupt 
trigger level configured in RXTRGLV (SC_CTL[7:6]) , and RDAIF (SC_INTSTS[0]) will be set 1. Driver 
can keep reading SC_DAT until RXEMPTY set 1 again. To avoid the situation that data count less 
than interrupt trigger level and stays in RX FIFO without trigger interrupt, driver could set a timeout 
duration to trigger interrupt if there is data in RX FIFO longer than the duration and does not reach the 
level to trigger. This timeout duration is configured in SC_RXTOUT register using ETU as time unit. 
Except configure proper value in SC_RXTOUT, RXTOIEN (SC_INTEN[9]) also needs to set 1. Then 
smartcard controller will trigger interrupt and set RXTOIF (SC_INTSTS[9]) to 1, to notify driver there’s 
data available in RX FIFO. 

 Error Signal and Character Repetition 

According to ISO7816-3 T=0 mode description, as shown in following, if the receiver receives a wrong 
parity bit, it will pull the SC_DAT to low by 1.5 bit period to inform the transmitter parity error. Then the 
transmitter will retransmit the character. The SC interface controller supports hardware error detection 
function in receiver and supports hardware re-transmit function in transmitter. Software can enable re-
transmit function by setting TXRTYEN (SC_CTL[23]). Software can also define the retry (re-transmit) 
number limitation in TXRTY (SC_CTL[22:20]). The re-transmit number is up to TXRTY +1 and if the 
re-transmit number is equal to TXRTY +1, TXOVERR flag will be set by hardware and if TERRIEN 
(SC_INTEN [2]), SC controller will generate a transfer error interrupt to CPU. Software can also define 
the received retry number limitation in RXRTY (SC_CTL[18:16]) register. The receiver retry number is 
up to RXRTY +1, if the number of received errors by receiver is equal to RXRTY +1, receiver will 
receive this error data to buffer and RXOVERR flag will be set by hardware and if TERRIEN 



 NUC980 

May 2, 2019  Page 112 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

(SC_INTEN[2]), SC controller will generate a transfer error interrupt to CPU. 

 

Start P Stop Start

Start P

Repetition

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12

Start P Start

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No Parity Error

With Parity Error (Receiver)

With Parity Error (Transmitter)

Re-transmit

Byte (i)

Byte (i)

Byte (i)

Byte (i)

Byte (i+1)

Detect Error Signal

Pull Low and Detect Next Start Bit

4 clocks

Byte (i)
1.5 clocks

 

Figure 14.4-7 Smart Card Parity Error Handling 

While working in T=1 mode, error detection is implementing in upper layer protocol. If transfer error is 
detected, an R-Block is sent to notify counterpart an error occurred instead of pull SC_DAT low. So 
while working in T=1 mode, both TXRTYEN and RXRTYEN must clear to 0. 

 Internal Time-out Counter 

The smart card interface includes a 24-bit time-out counter (SC_TMR0) and two 8 bit time-out 
counters (SC_TMR1, SC_TMR2). These counters help the controller in processing different real-time 
interval (ATR, WBT, WWT…). Each counter can be set to start counting once the trigger enable bit 
has been written or a START bit has been detected.. 

The following is the programming flow: 

Enable counter by setting TMRSEL (SC_CTL[14:13]). Select operation mode OPMODE 
(SC_TMRCTLx[27:24]) and give a count value CNT (SC_TMRCTLx[23:0]) by setting SC_TMRCTLx 
register. Set CNTEN0 (SC_ALTCTL[5]), CNTEN1 (SC_ALTCTL[6]) or CNTEN2 (SC_ALTCTL[7]) is to 
start counting.  

The SC_TMRCTL0, SC_TMRCTL1 and SC_TMRCTL2 timer operation mode are listed in below table. 

Note: Only SC_TMRCTL0 supports mode 0011 

OPMODE 
(SC_TMRCTLx[2
7:24]) 

(X=0 ~2) 

Operation Description 

0000 

The down counter started when CNTENx (SC_ALTCTL[7:5]) enabled and ended when counter time-out. The time-out 
value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

Start Start counting when CNTENx (SC_ALTCTL[7:5]) enabled  

End When the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and clear CNTENx 
(SC_ALTCTL[7:5]) automatically.  

0001 

The down counter started when the first START bit (reception or transmission) detected and ended when counter time-
out. The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

Start Start counting when the first START bit (reception or transmission) detected after CNTENx 
(SC_ALTCTL[7:5]) set to 1.  

End When the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and clear CNTENx 
(SC_ALTCTL[7:5]) automatically.  

0010 The down counter started when the first START bit (reception) detected and ended when counter time-out. The time-out 



 NUC980 

May 2, 2019  Page 113 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

Start Start counting when the first START bit (reception) detected bit after CNTENx (SC_ALTCTL[7:5]) set to 
1.  

End Start counting when the first START bit (reception) detected bit after CNTENx (SC_ALTCTL[7:5]) set to 
1.  

0011 

The down counter is only used for hardware activation, warm reset sequence to measure ATR timing.  

The timing starts when SC_RST de-assertion and ends when ATR response received or time-out.  

If the counter decreases to 0 before ATR response received, hardware will generate an interrupt to CPU. The time-out 
value will be CNT (SC_TMRCTL0[23:0]) + 1.  

Start Start counting when SC_RST de-assertion after CNTEN0 (SC_ALTCTL[5]) set to 1.  

It is used for hardware activation, warm reset mode.  

End When the down counter equals to 0 before ATR response received, hardware will set TMR0IF 
(SC_INTSTS[3]) and clear CNTEN0 (SC_ALTCTL[5]) automatically.  

When ATR received and down counter does not equal to 0, hardware will clear CNTEN0 
(SC_ALTCTL[5]) automatically.  

0100 

Same as 0000, but when the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and counter will re-
load the CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value and re-count until software clears 
CNTENx (SC_ALTCTL[7:5]).  

When ACTSTSx (SC_ALTCTL[15:13]) = 1, software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], 
SC_TMRCTL2[7:0]) value at any time. When the down counter equals to 0, counter will reload the new value of CNT 
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-count.  

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

0101 

Same as 0001, but when the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and counter will re-
load the CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value. When the next START bit is 
detected, counter will re-count until software clears CNTENx (SC_ALTCTL[7:5]).  

When ACTSTSx (SC_ALTCTL[15:13]) = 1 software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], 
SC_TMRCTL2[7:0]) value at any time. When the down counter equal to 0, it will reload the new value of CNT 
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.  

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

0110 

Same as 0010, but when the down counter equals to 0, it will set TMRxIF (SC_INTSTS[5:3]) and counter will re-load the 
CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value. When the next START bit is detected, 
counter will re-count until software clears CNTENx (SC_ALTCTL[7:5]).  

When ACTSTSx (SC_ALTCTL[15:13]) = 1, software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], 
SC_TMRCTL2[7:0]) value at any time. When the down counter equals to 0, counter will reload the new value of CNT 
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-count.  

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

0111 

The down counter started when the first START bit (reception or transmission) detected and ended when software 
clears CNTENx (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will reload the new value of CNT 
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.  

If the counter decreases to 0 before the next START bit detected, hardware will generate an interrupt to CPU. The time-
out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.  

Start Start counting when the first START bit detected after CNTENx (SC_ALTCTL[7:5]) set to 1.  

End Stop counting after CNTENx (SC_ALTCTL[7:5]) set to 0.  

1111 

Down counter starts when software set CNTENx (SC_ALTCTL[7:5]) bit or any START bit been detected and ends when 
software clears CNTENx (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will reload the new value of CNT 
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.  

If the counter decreases to “0” before the next START bit be detected, hardware will generate an interrupt to CPU. The 
time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0])+1.  

Start Start count when the CNTENx (SC_ALTCTL[7:5]) set to “1” or any START bit (CNTENx 
(SC_ALTCTL[7:5]) must be set) be detected.  

End Stop count after CNTENx (SC_ALTCTL[7:5]) set to “0”.  



 NUC980 

May 2, 2019  Page 114 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Table 14.4-1 Smartcard Internal Timer Operating Mode 

 Smartcard Insert/Remove Detection 

Smartcard interface can detect the presence if smartcard. But to correctly detect the status, CDLV 
(SC_CTL[26]) must be configured according the card slot in use. When set to 1, SC_CD high means 
card inserted, low means card removed. When clear to 0, SC_CD high means card removed, low 
means card inserted. Smartcard interface also support four level de-bounce function which can be 
configured by CDDBSEL (SC_CTL[25:24]) bits. 

Current level of SC_CD pin can be checked by polling CDPINSTS(SC_STATUS) bit. This bit reflects 
current level of SC_CD pin regardless of the setting of CDLV bit. During normal operation, driver could 
use interrupt to detect card status change. If CDIEN (SC_INTEN[7]) set to 1, every time card presence 
state change will trigger an interrupt to CPU, and set CDIF (SC_INTSTS[7]) to 1. In the interrupt 
service routine, software can check CINSERT (SC_STATUS[12]) and CREMOVE (SC_STATUS[11]) 
to know current card detection status. Writing 1 to them can clear CDIF, CINSERT, and CREMOVE 
bits 

 Miscellaneous Transmission Settings 

Here introduce some transmission relative settings 

 Elementary Time Unit (ETU) 

ETU is the elementary time unit used in smartcard data transmission. And its default 
value is 372 clocks. After PPS exchange, ETU can change to other value by setting 
ETURDIV (SC_ETUCTL[11:0]) . Actual ETU is ETURDIV + 1 clocks. 

 Stop Bit 

While receiving ATR or working in T=0 mode, NSB(SC_CTL[15]) needs to clear to 0 to 
make the interface communicate using 2 stop bits. Only 1 Stop bit is used when working 
in T=1 mode, so NSB(SC_CTL[15]) needs clear to 0. 

 Block Guard Time (BGT) 

According to ISO 7816-3, BGT, the minimum delay between transfer from different 
directions is 11 ETU while working in T=1 mode. BGT is configured in BGT 
(SC_CTL[12:8]) bits. If smartcard sends response within BGT time, and BGTIEN 
(SC_INTEN[6]) is 1, an interrupt will be triggered and BGTIF (SC_INTSTS[6]) will be set 
1. Write 1 can clear BGTIF bit. 

 Extra Guard Time (EGT) 

According to ISO 7816-3, if TC1 exist in ATR and does not equal to 255, guard time is 
12ETU + F/D * N / f = (12 + N). Where N is the EGT. EGT is set in SC_EGT register. 

 UART Mode 

When the UARTEN (SC_UARTCTL[0]) bit set, the Smart Card Interface controller can also be used as 
base UART function. The following is the program example for UART mode. Below is a programming 
example: 

1. Set UARTEN (SC_UARTCTL[0]) bit to enter UART mode.  

2. Do software reset by setting RXRST (SC_ALTCTL[1]) and TXRST (SC_ALTCTL[0]) bit to 
ensure that all state machine return idle state.  

3. Fill “0” to CONSEL (SC_CTL[5:4]) and AUTOCEN (SC_CTL[3]) field. (In UART mode, those 
fields must be “0”)  

4. Select the UART baud rate by setting ETURDIV (SC_ETUCR[11:0]) fields. For example, if 



 NUC980 

May 2, 2019  Page 115 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

smartcard module clock is 12 MHz and target baud rate is 115200bps, ETURDIV should fill 
with (12000000 / 115200 - 1).  

5. Select the data format include data length (by setting WLS (SC_UARTCTL[5:4]), parity format 
(by setting OPE (SC_UARTCTL[7]) and PBOFF (SC_UARTCTL[6])) and stop bit length (by 
setting NSB (SC_CTL[15]) or EGT (SC_EGT[7:0])).  

6. Select the receiver buffer trigger level by setting RXTRGLV (SC_CTL[7:6]) field and select the 
receiver buffer time-out value by setting RFTM (SC_RXTOUT[8:0]) field.  

7. Write SC_DAT (SC_DAT[7:0]) (TX) register or read the SC_DAT (SC_DAT[7:0]) (RX) register 
can perform UART function.  

  



 NUC980 

May 2, 2019  Page 116 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

14.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

SC Base Address: 

SC0_BA = 0xB009_0000 

SC1_BA = 0xB009_1000 

SC_DAT 

x = 0,1 
SCx_BA+0x00 R/W SC Receiving/Transmit Holding Buffer Register 0xXXXX_XXXX 

SC_CTL 

x = 0,1 
SCx_BA+0x04 R/W SC Control Register 0x0000_0000 

SC_ALTCTL 

x = 0,1 
SCx_BA+0x08 R/W SC Alternate Control Register 0x0000_0000 

SC_EGT 

x = 0,1 
SCx_BA+0x0C R/W SC Extend Guard Time Register 0x0000_0000 

SC_RXTOUT 

x = 0,1 
SCx_BA+0x10 R/W SC Receive Buffer Time-out Register 0x0000_0000 

SC_ETUCTL 

x = 0,1 
SCx_BA+0x14 R/W SC ETU Control Register 0x0000_0173 

SC_INTEN 

x = 0,1 
SCx_BA+0x18 R/W SC Interrupt Enable Control Register 0x0000_0000 

SC_INTSTS 

x = 0,1 
SCx_BA+0x1C R/W SC Interrupt Status Register 0x0000_0002 

SC_STATUS 

x = 0,1 
SCx_BA+0x20 R/W SC Status Register 0x0000_0202 

SC_PINCTL 

x = 0,1 
SCx_BA+0x24 R/W SC Pin Control State Register 0x0000_00x0 

SC_TMRCTL0 

x = 0,1 
SCx_BA+0x28 R/W SC Internal Timer Control Register 0 0x0000_0000 

SC_TMRCTL1 

x = 0,1 
SCx_BA+0x2C R/W SC Internal Timer Control Register 1 0x0000_0000 

SC_TMRCTL2 

x = 0,1 
SCx_BA+0x30 R/W SC Internal Timer Control Register 2 0x0000_0000 

SC_UARTCTL 

x = 0,1 
SCx_BA+0x34 R/W SC UART Mode Control Register 0x0000_0000 

SC_ACTCTL 

x = 0,1 
SCx_BA+0x4C R/W SC Activation Control Register 0x0000_0000 

  



 NUC980 

May 2, 2019  Page 117 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

15 I2C 

15.1 Overview 

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange 
between devices. The I2C standard is a true multi-master bus including collision detection and 
arbitration that prevents data corruption if two or more masters attempt to control the bus 
simultaneously.  

There are four sets of I2C controllers which support Power-down wake-up function 

15.2 Features 

 Supports up to four I2C ports 

 Master/Slave mode 

 Bidirectional data transfer between masters and slaves 

 Multi-master bus (no central master) 

 Supports Standard mode (100 kbps), Fast mode (400 kbps) and Fast mode plus (1 
Mbps) 

 Arbitration between simultaneously transmitting masters without corruption of serial data 
on the bus 

 Serial clock synchronization allow devices with different bit rates to communicate via one 
serial bus 

 Serial clock synchronization used as a handshake mechanism to suspend and resume 
serial transfer  

 Built-in 14-bit time-out counter requesting the I2C interrupt if the I2C bus hangs up and 
timer-out counter overflows 

 Programmable clocks allow for versatile rate control 

 Supports 7-bit addressing and 10-bit addressing mode 

 Supports multiple address recognition ( four slave address with mask option) 

 Supports Power-down wake-up function 

 Supports setup/hold time programmable 

  



 NUC980 

May 2, 2019  Page 118 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

15.3 Block Diagram 

Control Register

APB Interface

Bus Clock Control

Wakeup Control

Bus Protocol 
Interface Control

SCL

SDA

Bus 
Management 

Control

ALERT_N

SUSPEND

 

Figure 15.3-1 I2C Controller Block Diagram 

  



 NUC980 

May 2, 2019  Page 119 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

15.4 Functional Description 

On I2C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA 
lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock 
pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each 
transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be 
changed only during the low period of SCL and must be held stable during the high period of SCL. A 
transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please 
refer to Figure 15.4-1 for more detailed I2C BUS Timing. 

tBUF

STOP

SDA

SCL

START

tHD;STA

tLOW

tHD;DAT

tHIGH

tf

tSU;DAT

Repeated 

START

tSU;STA tSU;STO

STOP

tr

 

Figure 15.4-1 I2C Bus Timing 

The device’s on-chip I2C provides the serial interface that meets the I2C bus standard mode 
specification. The I2C port handles byte transfers autonomously. To enable this port, the bit I2CEN in 
I2C_CTL0 should be set to '1'. The I2C hardware interfaces to the I2C bus via two pins: SDA and SCL. 
When I/O pins are used as I2C ports, user must set the pins function to I2C in advance. 

Note: Pull-up resistor is needed for I2C operation as the SDA and SCL are open-drain pins. 

 I2C Protocol 

The following figure shows the typical I2C protocol. Normally, a standard communication consists of 
four parts: 

1. START or Repeated START signal generation 

2. Slave address transfer 

3. Data transfer 

4. STOP signal generation 

SCL

SDA

S

or

Sr

MSB

ACK

P

or

Sr

P

Sr
LSB MSB LSB

1 2 7 8 9 1 2 3 - 7 8 9

A6 A5 A4 - A1 A0 R/W D7 D6 D5 - D1 D0 NACK
ACK

 
 

Figure 15.4-2 I2C Bus Protocol 

 Operation Modes 

The on-chip I2C ports support three operation modes, Master, Slave, and General Call Mode. 

In a given application, I2C port may operate as a master or as a slave. In Slave mode, the I2C port 
hardware looks for its own slave address and the general call address. If one of these addresses is 
detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA bit), 
acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both 



 NUC980 

May 2, 2019  Page 120 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

master and slave devices if interrupt is enabled. When the microprocessor wishes to become the bus 
master, hardware waits until the bus is free before entering Master mode so that a possible slave 
action is not be interrupted. If bus arbitration is lost in Master mode, I2C port switches to Slave mode 
immediately and can detect its own slave address in the same serial transfer. 

To control the I2C bus transfer in each mode, user needs to set I2C_CTL0, I2C_DAT registers 
according to current status code of I2C_STATUS0 register. In other words, for each I2C bus action, 
user needs to check current status by I2C_STATUS0 register, and then set I2C_CTL0, I2C_DAT 
registers to take bus action. Finally, check the response status by I2C_STATUS0.  

The bits, STA, STO and AA in I2C_CTL0 register are used to control the next state of the I2C 
hardware after SI flag of I2C_CTL0 [3] register is cleared. Upon completion of the new action, a new 
status code will be updated in I2C_STATUS0 register and the SI flag of I2C_CTL0 register will be set. 
But the SI flag will not be set when I2C STOP. If the I2C interrupt control bit INTEN (I2C_CTL0 [7]) is 
set, appropriate action or software branch of the new status code can be performed in the Interrupt 
service routine. 

Figure 15.4-3 shows the current I2C status code is 0x08, and then set I2C_DATA=SLA+W and 
(STA,STO,SI,AA) = (0,0,1,x) to send the address to I2C bus. If a slave on the bus matches the 
address and response ACK, the I2C_STATUS0 will be updated by status code 0x18. 

S
I2C_DAT

(SLA+W)
ACK

Last Status

STATUS=0x08

Updated Status

STATUS=0x18

Register Control

I2C_DAT=SLA+W

(STA,STO,SI,AA)=(0,0,1,x)
Master to Slave

Slave to Master
 

Figure 15.4-3 Control I2C Bus according to the Current I2C Status 

 Master Mode 

In Figure 15.4-4 and Figure 15.4-5, all possible protocols for I2C master are shown. User needs to 
follow proper path of the flow to implement required I2C protocol. 

In other words, user can send a START signal to bus and I2C will be in Master Transmitter (MT) mode 
(Figure 15.4-4) or Master receiver (MR) mode (Figure 15.4-5) after START signal has been sent 
successfully and new status code would be 0x08. Followed by START signal, user can send slave 
address, read/write bit, data and Repeat START, STOP to perform I2C protocol. 



 NUC980 

May 2, 2019  Page 121 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

S
I2C_DAT

(SLA+W)

ACK/

NAK

Master to Slave

Slave to Master

I2C_DAT

(Data)

ACK/

NAK

Sr

P

P S

STATUS=0x08

(STA,STO,SI,AA)=(1,0,1,x)

ACK STATUS=0x18

NAK STATUS=0x20

I2C_DAT=SLA+W

(STA,STO,SI,AA)=(0,0,1,x)

ACK STATUS=0x28

NAK STATUS=0x30

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,x)

STATUS=0x10

(STA,STO,SI,AA)=(1,0,1,x) STATUS=0xF8

(STA,STO,SI,AA)=(0,1,1,x)
STATUS=0x08

(STA,STO,SI,AA)=(1,1,1,x)

I2C_DAT

(SLA+W)

ACK/

NAK

(Arbitration Lost) STATUS=0x38

I2C_DAT=SLA+W

(STA,STO,SI,AA)=(0,0,1,x)

I2C_DAT

(Data)

ACK/

NAK

STATUS=0x38

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,x)

Arbitration Lost

(STA,STO,SI,AA)=(0,0,1,X)

...

I
2
C bus will be release;

Not addressed SLV mode will be enterd

...

(STA,STO,SI,AA)=(1,0,1,X)

A START will be transmitted 

when the bus becomes free

Enter not addressed SLV mode

Send a START when bus 

becomes free

MT

MT

MR

Master TransmitterMT

I2C_DAT

(SLA+W)

I2C_DAT=SLA+W
(STA,STO,SI,AA)=(0,0,1,1)

(Arbitration Lost) ACK 

STATUS= 0x68, 0x78, 0xB0

ACK

To corresponding states in 

slave mode

 

Figure 15.4-4 Master Transmitter Mode Control Flow 

 

 



 NUC980 

May 2, 2019  Page 122 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

I2C_DAT

(SLA+R)
ACK

NAK

I2C_DAT

(Data)
NAK

I2C_DAT

(Data)
ACK

P S

P

Sr

I2C_DAT=SLA+R

(STA,STO,SI,AA)=(0,0,1,x)

STATUS=0x40

STATUS=0x48 STATUS=0x08

STATUS=0xF8

STATUS=0x10

STATUS=0x50

STATUS=0x58

(STA,STO,SI,AA)=(0,0,1,1)

(STA,STO,SI,AA)=(0,0,1,0)

(STA,STO,SI,AA)=(1,1,1,x)

(STA,STO,SI,AA)=(0,1,1,x)

(STA,STO,SI,AA)=(1,0,1,x)

S

STATUS=0x08

(STA,STO,SI,AA)=(1,0,1,x)

Master to Slave

Slave to Master

Arbitration Lost

I2C_DAT

(Data)
ACK

(STA,STO,SI,AA)=(0,0,1,0)

(Arbitration Lost) ACK 

STATUS=0x38

I2C_DAT

(SLA+R)

ACK/

NAK

I2C_DAT=SLA+R

(STA,STO,SI,AA)=(0,0,1,X)

(Arbitration Lost) 

STATUS=0x38

(STA,STO,SI,AA)=(0,0,1,X)

...

I
2
C bus will be release;

Not addressed SLV mode will be enterd

...

(STA,STO,SI,AA)=(1,0,1,X)

A START will be transmitted 

when the bus becomes free

Enter not addressed SLV 

mode

Send a START when bus becomes 

free

MR

MT

MR

Master ReceiverMR

I2C_DAT

(SLA+R)
ACK

I2C_DAT=SLA+R

(STA,STO,SI,AA)=(0,0,1,1)

(Arbitration Lost) ACK 

STATUS= 0x68, 0x78, 0xB0

To corresponding states in 

slave mode

 

Figure 15.4-5 Master Receiver Mode Control Flow 

If the I2C is in Master mode and gets arbitration lost, the status code will be 0x38. In status 0x38, user 
may set (STA, STO, SI, AA) = (1, 0, 1, X) to send START to re-start Master operation when bus 
become free. Otherwise, user may set (STA, STO, SI, AA) = (0, 0, 1, X) to release I2C bus and enter 
not addressed Slave mode. 

Slave Mode 

When reset default, I2C is not addressed and will not recognize the address on I2C bus. User can set 
slave address by I2C_ADDRn (n=0~3) and set (STA, STO, SI, AA) = (0, 0, 1, 1) to let I2C recognize 
the address sent by master. Figure 15.4-6 shows all the possible flow for I2C in Slave mode. Users 
need to follow a proper flow (as shown in Figure 15.4-6 to implement their own I2C protocol. 

If bus arbitration is lost in Master mode, I2C port switches to Slave mode immediately and can detect 
its own slave address in the same serial transfer. If the detected address is SLA+W (Master want to 
write data to Slave) after arbitration lost, the status code is 0x68. If the detected address is SLA+R 
(Master want to read data from Slave) after arbitration lost, the status code is 0xB0. 

Note: During I2C communication, the SCL clock will be released when writing ‘1’ to clear SI flag in 
Slave mode. 



 NUC980 

May 2, 2019  Page 123 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

S

(STA,STO,SI,AA)=(1,0,1,1)

... ...

Switch to not addressed mode

Own SLA will be recognized

Send START when bus free

S

(STA,STO,SI,AA)=(1,0,1,0)

... ...

Switch to not addressed mode

Own SLA will not be recognized

Send START when bus free

...

(STA,STO,SI,AA)=(0,0,1,0)

Switch to not addressed mode

Own SLA will not be recognized

Become I
2
C 

Master

Become I
2
C 

Master

Bus 

Free

S

I2C_DAT

(SLA+R)
ACK

(STA,STO,SI,AA)=(0,0,1,1)

STATUS=0xA8

I2C_DAT

(Data)
ACK

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,1)

...

I2C_DAT

(Data)

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,0)

STATUS=0xB8

Switch to not addressed mode
Own SLA will be recognized

ACK

I2C_DAT

(Data)

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,0)

NAK

STATUS=0xC8

STATUS=0xC0

(Arbitration Lost)

STATUS=0xB0

I2C_DAT

(SLA+W)
ACK

STATUS=0x60

I2C_DAT

(Data)
ACK

NAK

(STA,STO,SI,AA)=(0,0,1,1)

I2C_DAT

(Data)

(STA,STO,SI,AA)=(0,0,1,0)

STATUS=0x80

STATUS=0x88

Arbitration Lost

Master to Slave

Slave to Master

STATUS=0xA0

(Arbitration Lost)

STATUS=0x68

P

Sr

Sr

P

STATUS=0xA0

Sr

...

(STA,STO,SI,AA)=(0,0,1,1)

Switch to not addressed mode

Own SLA will be recognized

Become I
2
C 

Slave

STATUS=0xA0

STATUS=0xA0

Sr

I2C_DAT=Data

(STA,STO,SI,AA)=(0,0,1,X)

I2C_DAT=Data
(STA,STO,SI,AA)=(0,0,1,X)

...

(STA,STO,SI,AA)=(0,0,1,1)

... Sr

(STA,STO,SI,AA)=(0,0,1,1)(STA,STO,SI,AA)=(0,0,1,X)

(STA,STO,SI,AA)=(0,0,1,X)

I2C_DAT

(SLA+W)

I2C_DAT

(SLA+R)
ACK

ACK

 

Figure 15.4-6 Slave Mode Control Flow 

If I2C is still receiving data in addressed Slave mode but got a STOP or Repeat START, the status 
code will be 0xA0. User could follow the action for status code 0x88 as shown in the above figure 
when getting 0xA0 status. 

If I2C is still transmitting data in addressed Slave mode but got a STOP or Repeat START, the status 
code will be 0xA0. User could follow the action for status code 0xC8 as shown in the above figure 
when getting 0xA0 status. 

Note: After slave gets status of 0x88, 0xC8, 0xC0 and 0xA0, slave can switch to not address mode 
and own SLA will not be recognized. If entering this status, slave will not receive any I2C signal or 
address from master. At this status, I2C should enter idle mode. 

 General Call (GC) Mode 

If the GC bit (I2C_ADDRn [0]) is set, the I2C port hardware will respond to General Call address (00H). 
User can clear GC bit to disable general call function. When the GC bit is set and the I2C in Slave 
mode, it can receive the general call address by 0x00 after master send general call address to I2C 



 NUC980 

May 2, 2019  Page 124 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

bus, then it will follow status of GC mode. 

The GC mode can wake up when address matched. Note that the default address is 0x00, but user 
must set an address except for 0x00. 

S
I2C_DAT

(SLA+W=0x00)
ACK

(STA,STO,SI,AA)=(0,0,1,1)

GC=1

STATUS=0x70

I2C_DAT

(Data)
ACK

NAK

(STA,STO,SI,AA)=(0,0,1,1)

...

I2C_DAT

(Data)

(STA,STO,SI,AA)=(0,0,1,0)

STATUS=0x90

STATUS=0x98

S

(STA,STO,SI,AA)=(1,0,1,1)

... ...

Switch to not addressed mode

Own SLA will be recognized

Send START when bus free

S

(STA,STO,SI,AA)=(1,0,1,0)

... ...

Switch to not addressed mode

Own SLA will not be recognized

Send START when bus free

...

Switch to not addressed mode

Address 0x0 will be recognized

(STA,STO,SI,AA)=(0,0,1,0)

Switch to not addressed mode

Own SLA will not be recognized

Become I
2
C Master

Become I
2
C Master

Bus Free

...

(STA,STO,SI,AA)=(0,0,1,1)

Switch to not addressed mode

Own SLA will be recognized

Become I
2
C Slave

(Arbitration Lost) 

STATUS=0x78

Arbitraion Lost

Master to Slave

Slave to Master

STATUS=0xA0

Sr

STATUS=0xA0

P

Sr

(STA,STO,SI,AA)=(0,0,1,1)

...

Sr

(STA,STO,SI,AA)=(0,0,1,X)

(STA,STO,SI,AA)=(0,0,1,X)

I2C_DAT

(SLA+W=0x00)
ACK

 

Figure 15.4-7 GC Mode 

If I2C is still receiving data in GC mode but got a STOP or Repeat START, the status code will be 
0xA0. User could follow the action for status code 0x98 in above figure when getting 0xA0 status. 

Note: After slave gets status of 0x98 and 0xA0, slave can switch to not address mode and own SLA 
will not be recognized. If entering this status, slave will not receive any I2C signal or address from 
master. At this time, the I2C controller should enter idle mode. 

 Multi-Master 



 NUC980 

May 2, 2019  Page 125 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

In some applications, there are two or more masters on the same I2C bus to access slaves, and the 
masters may transmit data simultaneously. The I2C supports multi-master by including collision 
detection and arbitration to prevent data corruption. 

If for some reason two masters initiate command at the same time, the arbitration procedure 
determines which master wins and can continue with the command. Arbitration is performed on the 
SDA signal while the SCL signal is high. Each master checks if the SDA signal on the bus 
corresponds to the generated SDA signal. If the SDA signal on the bus is low but it should be high, 
then this master has lost arbitration. The device that has lost arbitration can generate SCL pulses until 
the byte ends and must then release the bus and go into slave mode. The arbitration procedure can 
continue until all the data is transferred. This means that in multi-master system each master must 
monitor the bus for collisions and act accordingly. 

DATA 1

DATA 2

SDA

SCL

S

master 1 loses arbitration 
DATA1 != SDA

Arbitration procedure of two masters
 

Figure 15.4-8 Arbitration Lost 

 When I2C_STATUS0 = 0x38, an “Arbitration Lost” is received. Arbitration lost event 
maybe occur during the send START bit, data bits or STOP bit. User could set (STA, 
STO, SI, AA) = (1, 0, 1, X) to send START again when bus free, or set (STA, STO, SI, 
AA) = (0, 0, 1, X) to not addressed Slave mode. User can detect bus free by ONBUSY 
(I2C_STATUS1 [8]). 

 When I2C_STATUS0 = 0x00, a “Bus Error” is received. To recover I2C bus from a bus 
error, STO should be set and SI should be cleared, and then STO is cleared to release 
bus. 

– Set (STA, STO, SI, AA) = (0, 1, 1, X) to stop current transfer 

– Set (STA, STO, SI, AA) = (0, 0, 1, X) to release bus 

 Example for Random Read on EEPROM 

The following steps are used to configure the I2C0 related registers when using I2C to read data from 
EEPROM. 

1. Set I2C0 the multi-function pin as SCL and SDA pins.  

2. Enable I2C0 APB clock. 

3. Set I2C0RST=1 to reset I2C0 controller then set I2C0 controller to normal operation. 

4. Set I2CEN=1 to enable I2C0 controller in the “I2C_CTL0” register. 



 NUC980 

May 2, 2019  Page 126 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

5. Give I2C0 clock a divided register value for I2C clock rate in the “I2C_CLKDIV”. 

6. Install I2C0 IRQ. 

7. Set INTEN=1 to enable I2C0 Interrupt in the “I2C_CTL0” register. 

8. Set I2C0 address registers “I2C_ADDR0 ~ I2C_ADDR3”. 

Random read operation is one of the methods of access EEPROM. The method allows the master to 
access any address of EEPROM space. Figure 15.4-9 shows the EEPROM random read operation. 

S

T

A

1 0 1 0
A

2

A

1

A

0
W

A

C

K

X X X

A

C

K

A

C

K

S

T
1 0 1 0

A

2

A

1

A

0
R

A

C

K

N

A

C

K

S

T

O

DATA BYTE
ROM ADDRRSS 

LOW BYTE

ROM ADDRRSS 

HIGH BYTESLA+W

SDA 

LINE

SLA+R

 

Figure 15.4-9 EEPROM Random Read 

Figure 15.4-10 shows how to use the I2C controller to implement the protocol of EEPROM random 
read. 

S
I2C_DAT
(SLA+W)

ACK

Master to Slave

Slave to Master

I2C_DAT
(ROM Address High Byte)

ACK

Sr
I2C_DAT
(SLA+R)

ACK

P

STATUS=0x08

(STA,STO,SI,AA)=(1,0,1,x)

STATUS=0x18

I2C_DAT=SLA+W
(STA,STO,SI,AA)=(0,0,1,x)

STATUS=0x28

I2C_DAT=ROM Address High Byte
(STA,STO,SI,AA)=(0,0,1,x)

STATUS=0x10

(STA,STO,SI,AA)=(1,0,1,x)

STATUS=0xf8

(STA,STO,SI,AA)=(0,1,1,x)

I2C_DAT=SLA+R
(STA,STO,SI,AA)=(0,0,1,x)

STATUS=0x40

NAK

STATUS=0x20

I2C_DAT
(ROM Address Low Byte)

ACK

STATUS=0x28

I2C_DAT=ROM Address Low Byte
(STA,STO,SI,AA)=(0,0,1,x)

P

STATUS=0xf8

(STA,STO,SI,AA)=(0,1,1,x)

NAK

STATUS=0x30

I2C_DAT
(Data)

NAK

STATUS=0x58
Read I2C_DAT to Get Data

(STA,STO,SI,AA)=(0,0,1,0)

P

STATUS=0xf8

(STA,STO,SI,AA)=(0,1,1,x)

NAK

STATUS=0x48

P

STATUS=0xf8

(STA,STO,SI,AA)=(0,1,1,x)

 

Figure 15.4-10 Protocol of EEPROM Random Read 

The I2C controller, which is a master, sends START to bus. Then, it sends a SLA+W (Slave address + 
Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. 
Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.  



 NUC980 

May 2, 2019  Page 127 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

15.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

I2C Base Address: 

I2Cn_BA = 0xB008_0000 + (0x1000 *n) 

n= 0,1,2,3 

I2C_CTL0 I2Cn_BA+0x00 R/W I2C Control Register 0 0x0000_0000 

I2C_ADDR0 I2Cn_BA+0x04 R/W I2C Slave Address Register0 0x0000_0000 

I2C_DAT I2Cn_BA+0x08 R/W I2C Data Register 0x0000_0000 

I2C_STATUS0 I2Cn_BA+0x0C R I2C Status Register 0 0x0000_00F8 

I2C_CLKDIV I2Cn_BA+0x10 R/W I2C Clock Divided Register 0x0000_0000 

I2C_TOCTL I2Cn_BA+0x14 R/W I2C Time-out Control Register 0x0000_0000 

I2C_ADDR1 I2Cn_BA+0x18 R/W I2C Slave Address Register1 0x0000_0000 

I2C_ADDR2 I2Cn_BA+0x1C R/W I2C Slave Address Register2 0x0000_0000 

I2C_ADDR3 I2Cn_BA+0x20 R/W I2C Slave Address Register3 0x0000_0000 

I2C_ADDRMSK0 I2Cn_BA+0x24 R/W I2C Slave Address Mask Register0 0x0000_0000 

I2C_ADDRMSK1 I2Cn_BA+0x28 R/W I2C Slave Address Mask Register1 0x0000_0000 

I2C_ADDRMSK2 I2Cn_BA+0x2C R/W I2C Slave Address Mask Register2 0x0000_0000 

I2C_ADDRMSK3 I2Cn_BA+0x30 R/W I2C Slave Address Mask Register3 0x0000_0000 

I2C_WKCTL I2Cn_BA+0x3C R/W I2C Wake-up Control Register 0x0000_0000 

I2C_WKSTS I2Cn_BA+0x40 R/W I2C Wake-up Status Register 0x0000_0000 

I2C_CTL1 I2Cn_BA+0x44 R/W I2C Control Register 1 0x0000_0000 

I2C_STATUS1 I2Cn_BA+0x48 R/W I2C Status Register 1 0x0000_0000 

I2C_TMCTL I2Cn_BA+0x4C R/W I2C Timing Configure Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 128 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

16 QSPI 

16.1 Overview 

The Quad Serial Peripheral Interface (QSPI) applies to synchronous serial data communication and 
allows full duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction 
interface. The NUC980 series contains one QSPI controller performing a serial-to-parallel conversion 
on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a 
peripheral device.  

The QSPI controller supports 2-bit Transfer mode to perform full-duplex 2-bit data transfer and also 
supports Dual and Quad I/O Transfer mode and the controller supports the PDMA function to access 
the data buffer. 

16.2 Features 

 Supports Master or Slave mode operation 

 Supports 2-bit Transfer mode 

 Supports Dual and Quad I/O Transfer mode 

 Configurable bit length of a transaction word from 8 to 32-bit 

 Provides separate 8-level depth transmit and receive FIFO buffers 

 Supports MSB first or LSB first transfer sequence 

 Supports Byte Reorder function 

 Supports Byte or Word Suspend mode 

 Supports PDMA transfer 

 Supports 3-Wire, no slave selection signal, bi-direction interface 

 Supports one data channel half-duplex transfer 

 Supports receive-only mode 

  



 NUC980 

May 2, 2019  Page 129 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

16.3 Block Diagram 

mw_sclk_o

mw_int_o

mw_ss_o[1:0]

mw_so_o

mw_si_i

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

I/O

Decoder

Registers

Clock

Generator

Tx/Rx

Buffer

SPI Core Logic

A
M

B
A

 A
P

B
 I

n
te

r
fa

c
e

 

Figure 16.3-1 QSPI Block Diagram 

  



 NUC980 

May 2, 2019  Page 130 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

16.4 Functional Description 

 Slave Selection 

In Master mode, this SPI controller can drive up to two off-chip slave devices through the slave select 
output signals SPISS0 and SPISS1, but it is a time-sharing operation and it can not operate with two 
slave devices simultaneously. 

SPI Controller

SPICLK

MISO

MOSI

SPISS0

SPISS1

SCLK

MISO

MOSI

SS

Slave 0

SCLK

MISO

MOSI

SS

Slave 1

 

Figure 16.4-1 Slave Selection 

Configure SS0(QSPI0_SSCTL[0]) or SS1(QSPI0_SSCTL [1]) can control SS0 or SS1 output data. 

QSPI0_SSCTL |= 0x1;     //Enable SS0 output pin  

QSPI0_SSCTL |= 0x2;     //Enable SS1 output pin 

QSPI0_SSCTL |= 0x3;     //Enable SS0 and SS1 output pin at the same time 

In master mode, user can configure SSACTPOL(QSPI0_SSCTL [2]) bit to let SS signal to active at 
high or low level. The trigger condition is based on type of slave device.  

 Automatic Slave Select 

In Master mode, if AUTOSS (QSPI0_SSCTL[3]) is set, the slave selection signal will be generated 
automatically and output to the QSPI0_SS pin according to whether SS0 (QSPI0_SSCTL[0]) and SS1 
(QSPI0_SSCTL[1]) is enabled or not. The slave selection signal will be set to active state by the SPI 
controller when the QSPI data transfer is started by writing to FIFO. It will be set to inactive state when 
QSPI bus is idle. 

// Enable automatic slave select function on SS0 pin  

QSPI0_SSCTL |= 0x1;   //Enable SS0 output pin 

QSPI0_SSCTL |= (0x1 << 3); //Enable automatic slave select function 

 Dual / Quad Mode 

QSPI controller supports dual IO transmit when DUALIOEN (QSPI0_CTL[21]) bit is set to 1. 

The following figure is dual output mode: 



 NUC980 

May 2, 2019  Page 131 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

DUALM

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Output

Output

 

Figure 16.4-2 Dual Output Mode 

And the following figure is dual input mode: 

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

DUALM

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

DIR_2QM

Master output

Slave input

Master input

Slave output
Input

Input

 

Figure 16.4-3 Dual Input Mode 

DATDIR(QSPI0_CTL[20]) is defined as the direction of data transmission. When DATDIR bit is set to 
1, SPI controller will output data to external device, otherwise when DATDIR bit is 0, QSPI controller 
will get the data from external device. 

//Use dual IO function, MOSI/MISO pin output the data 

QSPI0_CTL |= (0x1 << 21);  //Enable dual IO mode 

QSPI0_CTL |= (0x1 << 20);  //Direction is output  

QSPI0_TX = 0x12; 

SPI controller supports quad IO mode when QUADIOEN(QSPI0_CTL[22]) bit is set to 1. 

The following figure is quad output mode: 



 NUC980 

May 2, 2019  Page 132 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

QUADM

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Output

Output

SPI0_MOSI1

SPI0_MISO1

E A 6 2 E A 6 2

F B 7 3 F B 7 3

E A 6 2 E A 6 2

F B 7 3 F B 7 3

Master output

Slave input

Master input

Slave output

Output

Output

 

Figure 16.4-4 Quad Output Mode 

And the following figure is quad input mode: 

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

QUADM

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Input

Input

SPI0_MOSI1

SPI0_MISO1

E A 6 2 E A 6 2

F B 7 3 F B 7 3

E A 6 2 E A 6 2

F B 7 3 F B 7 3

Master output

Slave input

Master input

Slave output

Input

Input

 

Figure 16.4-5 Quad Input Mode 

DATDIR(QSPI0_CTL[20]) is defined as the direction of data transmission. When DATDIR bit is set to 
1, SPI controller will output data to external device, otherwise when DATDIR bit is 0, SPI controller will 
get the data from external device. 

// Use quad IO function, MOSI/MISO pin output the data 



 NUC980 

May 2, 2019  Page 133 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

QSPI0_CTL |= (0x1 << 22);  //Enable quad mode 

QSPI0_CTL |= (0x1 << 20);  //Direction is output 

QSPI0_TX = 0x12; 

 QSPI Interrupt 

The interrupt flag UNITIF(QSPI0_STATUS[1]) bit will be set to 1 after QSPI controller finished transmit 
or receive. If interrupt enable bit UNITIEN(QSPI0_CTL[17]) is also set to 1 and interrupt will occur. 
UNIT IF bit can be cleared by writing 1 to itself. 

QSPI0_CTL |= 0x20000;  //Enable interrupt 

QSPI0_TX  |= 0x5A5A5A5A; //Write data to TX 

while(!spi_isr);  //Wait for interrupt  

QSPI0_STATUS |= 0x2;  //Clear UNITIF bit 

If UNITIF bit doesn’t be set to 1, user still can poll BUSY(QSPI0_STATUS[0]) bit to check SPI 
controller finishes transmit or not. 

QSPI0_TX  |= 0x5A5A5A5A; //Write data to TX 

while(QSPI0_STATUS & 0x1); //Wait for SPI’s job is done 

 Slave mode 

QSPI controller supports slave mode. 

When SLAVE(QSPIx_CTL[18]) is set to 1, QSPI acts as slave mode. 

SSACTPOL(QSPIx_SSCTL[2]) defines the active polarity of slave selection signal. 

Enable slave 3-wire mode, set SLV3WIRE(QSPIx_SSCTL[4]) to 1, QSPI controller can work with 3-
wire interface including QSPIx_CLK, QSPIx_MOSI and QSPIx_MISO. 

While slave select interrupt event occurred, SSACTIF(QSPIx_STATUS[2]) is set to 1. 

Below is an example that QSPI acts as slave mode, low level active, wait for slave select event and 
read a data from RX FIFO. 

unsigned int data; 

QSPI0_CTL  |= (1 << 18); //Set to slave mode 

QSPI0_SSCTL &= ~(1 << 2); //low level active 

while(!(QSPI0_STATUS & 0x4)); //Wait for slave select event 

while(!(QSPI0_STATUS & (1 << 8))); //Wait Rx empty 

data = QSPI0_RX; //read received data in FIFO 

 

 

 PDMA Transfer function 

QSPI controller supports PDMA transfer function. 

When TXPDMAEN (QSPIx_PDMACTL[0]) is set to 1, the controller will issue request 
to PDMA controller to start the PDMA transmission process automatically. 

When RXPDMAEN (QSPIx_PDMACTL[1]) is set to 1, the controller will start the PDMA reception 
process. QSPI controller will issue request to PDMA controller automatically when there is data in the 



 NUC980 

May 2, 2019  Page 134 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

RX FIFO buffer. 

QSPIx_PDMACTL |= 1;  //Request PDMA controller to start PDMA TX 

while (PDMA_GET_TD_STS(PDMA0) & (1 << SPI_MASTER_TX_DMA_CH)); //Wait for PDMA 
transfer done 

 

QSPIx_PDMACTL |= 2;  //Request PDMA controller to start PDMA RX 

while (PDMA_GET_TD_STS(PDMA0) & (1 << SPI_MASTER_RX_DMA_CH)); //Wait for PDMA 
transfer done 

 QSPI Programming Example 

Do following actions basically (Should refer to the specification of device for the detailed steps): 

1. Write a divisor into QSPI0_CLKDIV to determine the frequency of serial clock. 

2. Write in QSPI0_SSCTL, set AUTOSS = 0, SSACTPOL = 0 and SS0(QSPI0_SSCTL[0]) or 
SS1(QSPI0_SSCTL[1]) to 1 to activate the device you want to access. 

3. When transmit (write) data to device: 

4. Write the data you want to transmit into QSPI0_TX. 

5. When receive (read) data from device: 

6. Write in QSPI0_CTL, set RXNEG = 0, TXNEG = 1, DWIDTH = 0x08, LSB = 0, SUSPITV = 0x0 
and Write 0 into QSPI0_TX to start the transfer. Wait for interrupt (if UNITIE = 1) or polling the 
BUSY(QSPI0_STATUS[0]) bit until it turns to 0. 

7. Read out the received data from QSPI_RX. 

8. Go to step 3 to continue data transfer or set QSPI0_SSCTL[0] or QSPI0_SSCTL[1] to 0 to 
inactivate the device 

  



 NUC980 

May 2, 2019  Page 135 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

16.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

QSPI_BA = 0xB000_6000 

QSPIx_CTL QSPIx_BA+0x00 R/W QSPI Control Register 0x0000_0034 

QSPIx_CLKDIV QSPIx_BA+0x04 R/W QSPI Clock Divider Register 0x0000_0000 

QSPIx_SSCTL QSPIx_BA+0x08 R/W QSPI Slave Select Control Register 0x0000_0000 

QSPIx_PDMACT
L 

QSPIx_BA+0x0C R/W QSPI PDMA Control Register 0x0000_0000 

QSPIx_FIFOCTL QSPIx_BA+0x10 R/W QSPI FIFO Control Register 0x4400_0000 

QSPIx_STATUS QSPIx_BA+0x14 R/W QSPI Status Register 0x0005_0110 

QSPIx_TX QSPIx_BA+0x20 W QSPI Data Transmit Register 0x0000_0000 

QSPIx_RX QSPIx_BA+0x30 R QSPI Data Receive Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 136 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

17 SPI 

17.1 Overview 

The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full 
duplex transfer. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The 
NUC980 series contains two sets of SPI controllers performing a serial-to-parallel conversion on data 
received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a 
peripheral device. Each SPI controller can be configured as a master or a slave device and supports 
the PDMA function to access the data buffer. 

17.2 Features 

 Supports two sets of SPI controllers 

 Supports Master or Slave mode operation 

 Configurable bit length of a transaction word from 8 to 32-bit 

 Provides separate 4-level depth transmit and receive FIFO buffers 

 Supports MSB first or LSB first transfer sequence 

 Supports Byte Reorder function 

 Supports Byte or Word Suspend mode 

 Supports PDMA transfer 

 Supports one data channel half-duplex transfer 

 Supports receive-only mode 

  



 NUC980 

May 2, 2019  Page 137 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

17.3 Block Diagram 

mw_sclk_o

mw_int_o

mw_ss_o[1:0]

mw_so_o

mw_si_i

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

I/O

Decoder

Registers

Clock

Generator

Tx/Rx

Buffer

SPI Core Logic

A
M

B
A

 A
P

B
 I

n
te

r
fa

c
e

 

Figure 17.3-1 SPI Block Diagram 

17.4 Functional Description 

 Slave Selection 

In Master mode, this SPI controller can drive up to two off-chip slave devices through the slave select 
output signals SPISS0 and SPISS1, but it is a time-sharing operation and it can not operate with two 
slave devices simultaneously. 

SPI Controller

SPICLK

MISO

MOSI

SPISS0

SPISS1

SCLK

MISO

MOSI

SS

Slave 0

SCLK

MISO

MOSI

SS

Slave 1

 

Figure 17.4-1 Slave Selection 

Configure SS0(SPIx_SSCTL[0]) or SS1(SPIx_SSCTL [1]) can control SS0 or SS1 output data. 

SPIx_SSCTL |= 0x1;     //Enable SS0 output pin  



 NUC980 

May 2, 2019  Page 138 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

SPIx_SSCTL |= 0x2;     //Enable SS1 output pin 

SPIx_SSCTL |= 0x3;     //Enable SS0 and SS1 output pin at the same time 

In master mode, user can configure SSACTPOL(SPIx_SSCTL [2]) bit to let SS signal to active at high 
or low level. The trigger condition is based on type of slave device.  

 Automatic Slave Select 

In Master mode, if AUTOSS (SPIx_SSCTL[3]) is set, the slave selection signal will be generated 
automatically and output to the SPIx_SS pin according to whether SS0 (SPIx_SSCTL[0]) and SS1 
(SPIx_SSCTL[1]) is enabled or not. The slave selection signal will be set to active state by the SPI 
controller when the SPI data transfer is started by writing to FIFO. It will be set to inactive state when 
SPI bus is idle. 

// Enable automatic slave select function on SS0 pin  

SPIx_SSCTL |= 0x1;   //Enable SS0 output pin 

SPIx_SSCTL |= (0x1 << 3); //Enable automatic slave select function 

 SPI Interrupt 

The interrupt flag UNITIF(SPIx_STATUS[1]) bit will be set to 1 after SPI controller finished transmit or 
receive. If interrupt enable bit UNITIEN(SPIx_CTL[17]) is also set to 1 and interrupt will occur. UNIT IF 
bit can be cleared by writing 1 to itself. 

SPIx_CTL |= 0x20000;  //Enable interrupt 

SPIx_TX  |= 0x5A5A5A5A; //Write data to TX 

while(!spi_isr);  //Wait for interrupt  

SPIx_STATUS |= 0x2;  //Clear UNITIF bit 

If UNITIF bit doesn’t be set to 1, user still can poll BUSY(SPIx_STATUS[0]) bit to check SPI controller 
finishes transmit or not. 

SPIx_TX  |= 0x5A5A5A5A; //Write data to TX 

while(SPIx_STATUS & 0x1); //Wait for SPI’s job is done 

 Slave mode 

SPI controller supports slave mode. 

When SLAVE(SPIx_CTL[18]) is set to 1, SPI acts as slave mode. 

SSACTPOL(SPIx_SSCTL[2]) defines the active polarity of slave selection signal. 

While slave select interrupt event occurred, SSACTIF(SPIx_STATUS[2]) is set to 1. 

Below is an example that SPI acts as slave mode, low level active, wait for slave select event and 
read a data from RX FIFO. 

unsigned int data; 

SPIx_CTL  |= (1 << 18); //Set to slave mode 

SPIx_SSCTL &= ~(1 << 2); //low level active 

while(!(SPIx_STATUS & 0x4)); //Wait for slave select event 

while(!(SPIx_STATUS & (1 << 8))); //Wait Rx empty 

data = SPIx_RX; //read received data in FIFO 

 



 NUC980 

May 2, 2019  Page 139 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 PDMA Transfer function 

SPI controller supports PDMA transfer function. 

When TXPDMAEN (SPIx_PDMACTL[0]) is set to 1, the controller will issue request 
to PDMA controller to start the PDMA transmission process automatically. 

When RXPDMAEN (SPIx_PDMACTL[1]) is set to 1, the controller will start the PDMA reception 
process. SPI controller will issue request to PDMA controller automatically when there is data in the 
RX FIFO buffer. 

SPIx_PDMACTL |= 1;  //Request PDMA controller to start PDMA TX 

while (PDMA_GET_TD_STS(PDMA0) & (1 << SPI_MASTER_TX_DMA_CH)); //Wait for PDMA 
transfer done 

 

SPIx_PDMACTL |= 2;  //Request PDMA controller to start PDMA RX 

while (PDMA_GET_TD_STS(PDMA0) & (1 << SPI_MASTER_RX_DMA_CH)); //Wait for PDMA 
transfer done 

 SPI Programming Example 

Do following actions basically (Should refer to the specification of device for the detailed steps): 

1. Write a divisor into SPIx_CLKDIV to determine the frequency of serial clock. 

2. Write in SPIx_SSCTL, set AUTOSS = 0, SSACTPOL = 0 and SS0(SPIx_SSCTL[0]) or 
SS1(SPIx_SSCTL[1]) to 1 to activate the device you want to access. 

3. When transmit (write) data to device: 

4. Write the data you want to transmit into SPIx_TX. 

5. When receive (read) data from device: 

6. Write in SPIx_CTL, set RXNEG = 0, TXNEG = 1, DWIDTH = 0x08, LSB = 0, SUSPITV = 0x0 
and Write 0 into SPIx_TX to start the transfer. 

7. Wait for interrupt (if UNITIE = 1) or polling the BUSY(SPIx_STATUS[0]) bit until it turns to 0. 

8. Read out the received data from SPI_RX. 

9. Go to step 3 to continue data transfer or set SPIx_SSCTL[0] or SPIx_SSCTL[1] to 0 to 
inactivate the device 

  



 NUC980 

May 2, 2019  Page 140 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

17.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

SPI_BA = 0xB000_6000 + (0x0000_1000 * x) 

x = 0,1 

SPIx_CTL SPIx_BA+0x00 R/W SPI Control Register 0x0000_0034 

SPIx_CLKDIV SPIx_BA+0x04 R/W SPI Clock Divider Register 0x0000_0000 

SPIx_SSCTL SPIx_BA+0x08 R/W SPI Slave Select Control Register 0x0000_0000 

SPIx_PDMACTL SPIx_BA+0x0C R/W SPI PDMA Control Register 0x0000_0000 

SPIx_FIFOCTL SPIx_BA+0x10 R/W SPI FIFO Control Register 0x2200_0000 

SPIx_STATUS SPIx_BA+0x14 R/W SPI Status Register 0x0005_0110 

SPIx_TX SPIx_BA+0x20 W SPI Data Transmit Register 0x0000_0000 

SPIx_RX SPIx_BA+0x30 R SPI Data Receive Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 141 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

18 I2S CONTROLLER (I2S) 

18.1 Overview 

The I²S controller consists of I²S and PCM protocols to interface with external audio CODEC. The I²S 
and PCM interface supports 8, 16, 18, 20 and 24-bit left/right precision in record and playback. When 
operating in 18/20/24-bit precision, each left/right-channel sample is stored in a 32-bit word. Each 
left/right-channel sample has 24/20/18 MSB bits of valid data and other LSB bits are the padding 
zeros. When operating in 16-bit precision, right-channel sample is stored in MSB of a 32-bit word and 
left-channel sample is stored in LSB of a 32-bit word. 

 

18.2 Features 

 Support I²S interface record and playback 

– Left/right channel 

– 8, 16, 20, 24-bit data precision 

– Support master and slave mode 

 Support PCM interface record and playback 

– Two slots 

– 8, 16, 20, 24-bit data precision 

– Master mode 

 Use DMA to playback and record data, with interrupt 

  



 NUC980 

May 2, 2019  Page 142 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

18.3 Block Diagram 

AHB Bus Master AHB Bus Slave

Record 
FIFO

RFIFO 
Control

DMA 
Control

Play FIFO
PFIFO 

Control
Control 
Register

I2S PCM

MUX

AHB Bus

Audio Interface
 

Figure 18.3-1 I2S Controller Block Diagram 

  



 NUC980 

May 2, 2019  Page 143 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

18.4 Functional Description 

 I2S Master/Slave Mode 

To use slave mode, user can set SLAVE(I2S_CON[20]) bit to 1 otherwise set 0 to be as master mode. 

Note that slave only can be chosen when use I²S interface and only use master mode if PCM interface 
is used. 

Master mode connection between controller and audio codec: 

Audio
Controller

Audio
Codec

MCLK

BCLK

WS

DOUT

DIN

 

Figure 18.4-1 I2S Master Mode Connection 

Slave mode connection between controller and audio codec: 

Audio
Controller

Audio
Codec

MCLK

BCLK

WS

DOUT

DIN

 

Figure 18.4-2 I2S Slave Mode Selection 

 I2S Source Clock Configuration 

Software can choose APLL, UPLL or external crystal as source clock of I²S by configuring 
I2S_S(CLK_DIVCTL1[20:19]) 

APLLFout

I2S_N
(CLK_DIVCTL1[31:24])

I2S_SrcCLK ECLKI
2

S

I2S
(CLK_HCLKEN[24])

CLK_SW4
(4-to-1)
(MUX)

CLK_DIVn
(÷  (I2S_N+1))

UPLLFout

I2S_S
(CLK_DIVCTL1[20:19])

XTALIN12M

 



 NUC980 

May 2, 2019  Page 144 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Figure 18.4-3 I2S Clock Configuration 

CLK_DIVCTL1 = (CLK_DIVCTL1 & ~(0x3 << 19)) | 0x2;   //I2S source clock is APLL 

 

 I2S Calculation and Configuration of Clock 

The clocks in I²S need to be configured are MCLK and BCLK. Only MCLK needs to be configured 
when using I2S slave mode. 

In general, to get the accurate clock, suggest using PLL and set speed to 12.288 MHz, 16.934 MHz or 
11.285 MHz.  

The following is an example to let user know how to get 48 kHz sampling rate when 16-bit data and 
stereo channel are used. 

If audio codec supports 256x sampling rate, the calculation of MCLK is as below:  

MCLK = 256 * 48000 =11288000 Hz = 12.288 MHz 

 

And if use 16-bit data width and stereo channel, the calculation of BCLK is as below: 

BCLK = 48000 * 16 * 2 = 1536000 Hz = 1.536 MHz 

 

So the divider PSR(I2S_CON[19:16]) is 12.288/12.288 - 1 = 1 - 1 = 0 

And BCLK_DIV(I2S_CON[7:5]) is (12.288/1.536)/2-1 = 8/2-1 = 3 

 

I2S_CON = I2S_CON & ~(0xF << 16);   //PRS=0 

I2S_CON = I2S_CON & ~(0x1 << 4);   //MCLK comes from divide PLL by PRS 

I2S_CON = (I2S_CON & ~(0x1 << 5)) | 0x3; //BCLK_DIV=3 

 

 DMA 

I²S use DMA to implement playing and recording. The description of DMA operation and configuration 
list as below: 

 Play and record DMA base address (I2S_RDESB and I2S_PDESB). All the play and 
record data will be put in the address, in general, this space is somewhere in RAM which 
is continuous and non-cacheable 

 DMA length register (I2S_RDES_LENGTH and I2S_PDES_LENGTH), is the total length 
of DMA space 

 DMA current address register (I2S_RDESC and I2S_PDESC) will show the current DMA 
address which is playing or recording. Software can use this to determine how much 
buffer can be use at this time. 

 Software can decide when (1/2, 1/4 or 1/8 of DMA length) interrupt will occur by 
configuring R_DMA_IRQ_SEL(I2S_GLBCON[15:14]), 
P_DMA_IRQ_SEL(I2S_GLBCON[13:12]) and enabling DMA_IRQ_EN(I2S_GLBCON[21]) 
or P_DMA_IRQ_EN(I2S_GLBCON[20]) bit 

DMA configuration example list as below: 

I2S_PDESB = 0x80001000;   //Assign play base address  



 NUC980 

May 2, 2019  Page 145 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

I2S_PDES_LENGTH = 2*1024;   //DMA length is 2048 bytes 

I2S_CON = (I2S_CON & ~(0x3 << 12)) | (0x1 << 12); //Interrupt will occur when 
DMA reach 1/2 of DMA length 

I2S_CON |= (0x1 << 20);  //Enable interrupt 

 DMA section number: Software can read P_DMA_RIA_SN(I2S_PSR[7:5]) or 
R_DMA_RIA_SN(I2S_RSR[7:5]) bit to know which DMA section that DMA is playing or 
recording. If the value read from P_DMA_RIA_SN is 2 and P_DMA_IRQ_SEL is b’11, 
that means that DMA is playing at the 2/8 section 

 DMA down counter: Software can read down counter register(I2S_COUNTER) to know 
how much data had been played or recorded. When DMA transfers one data and down 
counter register will decrease one until it becomes zero. When down counter value 
becomes zero, software can enable IRQ_DMA_CNTER_EN(I2S_GLBCON[4]) bit to let 
interrupt happen 

I2S_COUNTER = 0x1000;  //Set down count value to x1000 

… 

while(I2S_COUNTER>0x30);          //Test if the value is smaller than 0x30 

… 

 Zero crossing detection: When playing the audio by I²S function, the output data comes 
from the memory by DMA. However, it may result some pop noise if the playing gain level 
is changed by user at any time. Because, the output data is not zero, and the output data 
cross the gain change will generate a sharp pop noise. Therefore, the zero crossing 
function will help to reduce this situation. Software can enable this function by setting 
DMA_DATA_ZERO_EN(I2S_RESET[3])to 1 and also interrupt can be enabled by setting 
IRQ_DMA_DATA_ZERO_EN(I2S_GLBCON[3]) to 1 

 Sequence of DMA Data 

When use I²S 18, 20, 24-bits, each data stored in DMA buffer will all use 32-bit width. 

Take I²S 16-bit as an example: 

Dual channels(Stereo) 

Base Address DMA Buffer 

0x1000 Left channel – LSB byte 

0x1001 Left channel – MSB byte 

0x1002 Right channel – LSB byte 

0x1003 Right channel – MSB byte 

0x1004 Left channel – LSB byte 

0x1005 Left channel – MSB byte 

0x1006 Right channel – LSB byte 

0x1007 Right channel – MSB byte 

… … 

Table 18.4-1 Stereo Mode DMA Buffer Layout 

Single channel(Mono)： 



 NUC980 

May 2, 2019  Page 146 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Base Address DMA Buffer 

0x1000 Left channel – LSB byte 

0x1001 Left channel – MSB byte 

0x1002 Left channel – LSB byte 

0x1003 Left channel – MSB byte 

0x1004 Left channel – LSB byte 

0x1005 Left channel – MSB byte 

0x1006 Left channel – LSB byte 

0x1007 Left channel – MSB byte 

… … 

Table 18.4-2 Mono Mode DMA Buffer Layout 

 Interface Selection 

Software can choose I²S or PCM interface by setting BLOCK_EN(I2S_GLBCON[0]) bit. 

I2S_GLBCON = (I2S_GLBCON & ~0x3) | 0x2;  //Choose PCM interface 

 PCM Interface 

The following figure is PCM timing wave form, 

SLOT1

BCLK

FS

DI / DO

SLOT 

position
0 1 2 7 8

MSB LSB

16

SLOT2

17 23

MSB LSB

FS_PERIOD -1

0

SLOT1_x_START SLOT2_x_START

SLOT1_O_START (ACTL_PCMS1ST[25:16]) = 1,   

SLOT2_O_START (ACTL_PCMS2ST[25:16]) = 16, BCLKP (ACTL_PCMCON[0]) = 0  

Figure 18.4-4 I2S PCM Interface 

And arguments that software can configure are: 

1. Bit number between two FS – FS_PERIOD(I2S_PCMCON[25:16]) 

2. Bit number between SLOT1_x_START or SLOT2_x_START and FS – I2S_PCMS1ST or 
I2S_PCMS2ST 

Take 8 kHz sampling rate and data width is 32-bit for example. If two slots are used and assume clock 
speed of source clock is 24.576 MHz 

//BCLK=24.576 MHz/48 = 512k 



 NUC980 

May 2, 2019  Page 147 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

I2S_PCMCON = I2S_PCMCON | (23<<8)); 

 

//FS_PERIOD = 32+32 

I2S_PCMCON = (63<<16) | 0;    //FS= 512/64=8k, //BCLKP = 0 

 

//SLOT1_O_START = 1 

//SLOT1_I_START = 1 

I2S_PCMS1ST = 0x00010001; 

 

//SLOT2_O_START = 33 

//SLOT2_I_START = 33 

I2S_PCMS2ST = 0x00210021; 

 Data Split 

Data split function can put the continuous data into different DMA buffer by channel or slot. Software 
can process these data in single buffer address easier than two different addresses.  

Software needs to set the second DMA base address register (I2S_RDESB2 and I2S_PDESB2). The 
data in first DMA address which specified by I2S_RDESB and I2S_PDESB register is I²S left channel 
or PCM slot1. The data in second DMA address is I²S right channel or PCM slot2. 

To reach the target mentions before, software can set SPLIT_DATA(I2S_RESET[20]) bit to 1 to 
enable this function. After enabling data split function, layout of data stored in buffer will like the 
following table (take I²S interface for example) 

Base address-1 DMA Buffer 

0x1000 Left channel – LSB byte 

0x1001 Left channel – MSB byte 

0x1002 Left channel – LSB byte 

0x1003 Left channel – MSB byte 

0x1004 Left channel – LSB byte 

0x1005 Left channel – MSB byte 

0x1006 Left channel – LSB byte 

0x1007 Left channel – MSB byte 

… … 

Table 18.4-3 Stereo Mode Data Split Left Channel DMA Buffer  

Base address-2 DMA Buffer 

0x2000 Right channel – LSB byte 

0x2001 Right channel – MSB byte 

0x2002 Right channel – LSB byte 



 NUC980 

May 2, 2019  Page 148 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

0x2003 Right channel – MSB byte 

0x2004 Right channel – LSB byte 

0x2005 Right channel – MSB byte 

0x2006 Right channel – LSB byte 

0x2007 Right channel – MSB byte 

… … 

Table 18.4-4 Stereo Mode Data Split Right Channel DMA Buffer  

 

18.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

I2S Base Address: 

I2S_BA = 0xB000_2000 

I2S_GLBCON I2S_BA+0x000 R/W I2S Global Control Register 0x0000_0000 

I2S_RESET I2S_BA+0x004 R/W I2S Sub Block Reset Control Register 0x0000_0000 

I2S_RDESB I2S_BA+0x008 R/W I2S Record DMA Destination Base Address Register 0x0000_0000 

I2S_RDES_LENGTH I2S_BA+0x00C R/W I2S Record DMA Destination Length Register 0x0000_0000 

I2S_RDESC I2S_BA+0x010 R I2S Record DMA Destination Current Address Register 0x0000_0000 

I2S_PDESB I2S_BA+0x014 R/W I2S Play DMA Destination Base Address Register 0x0000_0000 

I2S_PDES_LENGTH I2S_BA+0x018 R/W I2S Play DMA Destination Length Register 0x0000_0000 

I2S_PDESC I2S_BA+0x01C R I2S Play DMA Destination Current Address Register 0x0000_0000 

I2S_RSR I2S_BA+0x020 R/W I2S Record Status Register 0x0000_0000 

I2S_PSR I2S_BA+0x024 R/W I2S Play Status Register 0x0000_0000 

I2S_CON I2S_BA+0x028 R/W I2S Control Register 0x0000_0000 

I2S_COUNTER I2S_BA+0x02C R/W I2S Play DMA Down Counter Register 0xFFFF_FFFF 

I2S_PCMCON I2S_BA+0x030 R/W I2S PCM Mode Control Register 0x0000_0000 

I2S_PCMS1ST I2S_BA+0x034 R/W I2S PCM Mode Slot 1 Start Register 0x0000_0000 

I2S_PCMS2ST I2S_BA+0x038 R/W I2S PCM Mode Slot 2 Start Register 0x0000_0000 

I2S_RDESB2 I2S_BA+0x040 R/W I2S Record DMA Destination Base Address 2 Register 0x0000_0000 

I2S_PDESB2 I2S_BA+0x044 R/W I2S Play DMA Destination Base Address 2 Register 0x0000_0000 

 



 NUC980 

May 2, 2019  Page 149 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

19 ETHERNET MAC CONTROLLER (EMAC) 

19.1 Overview 

The NUC980 provides 2 Ethernet MAC Controllers (EMAC) for Network application.  

The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal CAM 
function for recognizing Ethernet MAC addresses; Transmit-FIFO, Receive-FIFO, TX/RX state 
machine controller, time stamping engine for IEEE 1588, Magic Packet parsing engine and status 
controller.  

The EMAC supports RMII (Reduced MII) interface to connect with external Ethernet PHY. 

19.2 Features  

 Supports IEEE Std. 802.3 CSMA/CD protocol  

 Supports Ethernet frame time stamping for IEEE Std. 1588 – 2002 protocol  

 Supports both half and full duplex for 10 Mbps or 100 Mbps operation  

 Supports RMII interface  

 Supports MII Management function to control external Ethernet PHY  

 Supports pause and remote pause function for flow control  

 Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes) 
reception  

 Supports 16 entries CAM function for Ethernet MAC address recognition  

 Supports Magic Packet recognition to wake system up from power-down mode  

 Supports 256 bytes transmit FIFO and 256 bytes receive FIFO  

 Supports DMA function  

  



 NUC980 

May 2, 2019  Page 150 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

19.3 Block Diagram 

AHB Bus Master
AHB Bus

Slave

Register 

Files

MII Management

State Machine

MDCMDIO

TXDMA

State Machine

RXDMA

State Machine

TXFIFORXFIFO
TXFIFO 

Control

CSMA/CD

(RXMAC, TXMAC)

MII2RMII

Arbiter

RXFIFO  

Control

Flow Control

AHB

Station Management InterfaceRMII

MAC 

Address 

Register

Magic Packet

Engine

IEEE 1588

PTP Engine

 

Figure 19.3-1 EMAC Block Diagram 

  



 NUC980 

May 2, 2019  Page 151 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

19.4 Functional Description 

 PHY Control 

Ethernet MAC controllers read and write PHY internal registers to communicate with PHY via 
EMAC_MDC and EMAC_MDIO pins. EMAC_MDC clock rate is AHB clock divide by MDCLK_N 
(CLK_DIVCTL8) + 1. The maximum clock setting depends on PHY’s datasheet. EMAC_MDC starts 
output clock after MDCON (EMAC_MIIDA[19]) set 1. This clock is only used for access PHY’s 
registers, and not used for packet transmit or receive. So it could be stopped while not accessing PHY 
registers. 

Both PHY’s address and PHY’s register address must be known to access PHY registers. PHY 
address may be configurable depends on PHY’s power-on setting circuit. Taking IC Plus IP101G PHY 
as example, its PHY address is configured by the pull-up or pull-down state of PHY_AD0, PHY_AD1, 
PHY_AD2, PHY_AD3 pins. IEEE 802.3 defines some base PHY registers and most PHYs support 
these registers, so different PHYs could share a driver sometimes. 

Besides these basic registers, PHYs usually has their proprietary registers as well, but the definition of 
these registers is varies between each PHYs. Please check PHYs’ technical document for the 
meaning of these proprietary registers. 

 Below list the steps to read PHY internal registers: 

1. Fill PHY address in PHYAD (EMAC_MIIDA[12:8]) and PHY register address in PHYRAD 
(EMAC_MIIDA[4:0]). 

2. Set both BUSY (EMAC_MIIDA[17]) bit and MDCON (EMAC_MIIDA[18]) bit to 1 to send out 
read command. 

3. Poll BUSY bit until it clear to 0. 

4. Read the PHY register value from EMAC_MIID register. 

unsigned int mdio_read(unsigned int reg, unsigned int addr) 

{ 

 EMAC_MIIDA = reg | (addr << 8) | BUSY | MDCON; 

 while(EMAC_MIIDA & BUSY); 

 return EMAC_MIID; 

} 

 And below are the steps to write PHY internal registers: 

1. Fill the value to program into EMAC_MIID register. 

2. Fill PHY address in PHYAD and PHY register address in PHYRAD. 

3. Set WRITE (EMAC_MIIDA[16]), BUSY, and MDCON bits to 1. This will trigger EMAC send 
write command to PHY. 

4. Poll BUSY bit, this bit alto clear to 0 after write complete. 

unsigned int mdio_write(unsigned int reg, unsigned int addr, unsigned int data) 

{ 

 EMAC_MIID = data; 

 EMAC_MIIDA = reg | (addr << 8) | BUSY | MDCON | WRITE; 

 while(EMAC_MIIDA & BUSY); 



 NUC980 

May 2, 2019  Page 152 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

} 

 

The main purpose of reading PHY registers is to get the network operating mode and speed. PHY 
starts Auto-Negotiation (AN) after network cable properly connected to decide to working in full duplex 
mode or half duplex mode, and also the speed, 10Mbps or 100Mbps. Driver need to check the value o 
PHY register, Auto-Negotiation Link Partner Base Page Ability to decide link partner ability and then 
set OPMOD (EMAC_MCMDR[20]) and FDUP (EMAC_MCMDR[18]) accordingly. EMAC and PHY 
must have the same operating mode setting to transmit and receive packet correctly. 

 CAM Configuration 

CAM is used for Ethernet MAC address comparison, avoiding EMAC received all Ethernet packets 
including those destined to other machines and drag down system performance. NUC980 built-in 16 
set of CAMs. Among them, 13 (CAM0~CAM12) are actually used for address comparison. And the 
reset 3 sets (CAM13~CAM15) are reserved for sending control frame. ECMP (EMAC_CAMCMR[4]), 
the main switch needs to be set 1 to enable CAM function. And fill the compared MAC address to one 
of the entries in CAM0~CAM12. For example, if the Ethernet MAC address is 00:00:00:59:16:88, and 
then EMAC_CAM0M should filled with 0x00000059 and EMAC_CAM0L will with 0x1688000000. And 
last, set CAM0EN(EMAC_CAMEN[0]) to 1 and enable CAM0. 

To receive broadcast packets, drivers could ether use one of the CAM entries and set EMAC_CAMxM 
and EMAC_CAMxL to 0xFFFFFFFF, 0xFFFF0000 respectively, enable CAMxEN to receive broadcast 
packets. Or simply set ABP (EMAC_CAMCMR[2]) bit to 1. 

To receive multicast packets, drivers could ether use one of the CAM entries and set EMAC_CAMxM, 
EMAC_CAMxL to the mapping MAC address of the multicast IP address, enable CAMxEN to receive 
specific multicast packets. Or set AMP (EMAC_CAMCMR[1]) to 1 to receive all multicast packets. 

Driver could put NUC980 Ethernet MAC into Promiscuous Mode by setting AUP 
(EMAC_CAMCMR[0]), AMP (EMAC_CAMCMR[1]), and ABP (EMAC_CAMCMR[2]) to 1. Under this 
mode, all Ethernet packets will be received. 

 Control Frame 

IEEE 802.3 defines control frame used for flow control. NUC980 supports transmit and receive pause 
frame for flow control. NUC980 will receive pause frame after ACP (EMAC_MCMDR[3]) set 1. After 
received pause frame, EMAC will temporarily postpone packet transmission for a designated duration. 
During this period, PAU(EMAC_MGSTA[12]) will be set 1 automatically, and clear to 0 automatically 
afterwards 0. While received pause frame CFR (EMAC_MISTA[14]) will be set to 1. At the meantime, 
interrupt will be triggered if CFRIEN (EMAC_MIEN[14]) is 1. 

To transmit control frame, fill the MAC address 01:80:C2:00:00:01 into EMAC_CAM13M and 
EMAC_CAM13L registers, fill local MAC address into EMAC_CAM14M and EMAC_CAM14L 
registers. Fill 0x88080001 into EMAC_CAM15M, and fill pause duration into 
OPERAND(EMAC_CAM15L[31:24]). Pause time uses 512 but time as unit. Finally, set SDPZ 
(EMAC_MCMDR[16]) to 1 to send this pause frame. SPDZ automatically clears to 0 after transmit 
complete. 

Note: Pause frame could only be used in full-duplex mode. 

 Wake on Lan (WoL) 

NUC980 supports Wake on Lan feature. System could wake up from power-down state after received 
magic packet. Magic packet format is defined in AMD’s white paper, Magic Packet Technology. It 
contains6 continuous 0xFFs anyplace in the packet follow by 16 duplications of local MAC address. 
While both MGPWAKE(EMCA_MCMDR[6]) and WOLIEN (EMAC_MIEN[15]) set 1, EMAC will wake 
up system from power-down mode after received a magic packet its duplicated MAC address matched 



 NUC980 

May 2, 2019  Page 153 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

the address in CAM0, and set MGPR (EMAC_MISTA[15]) to 1. Software can clear MGPR by writing 1 
to it. 

 Packet Receive 

EMAC use a link-list structure named as descriptors to receive Ethernet packets. Driver needs to 
prepare RX descriptors in advance before enabled receive function. After CAM decides a packet 
needs to be received, packet will be received to a memory space describes in the descriptor. The 
status and length of received packet is recorded in the descriptor. And then EMAC will use next 
descriptor in the link list to receive next packet. So Rx descriptor is where CPU and EMAC used to 
exchange the information of received packets. 

Each descriptor occupied 4 words. All descriptors form a link list. Figure below shows the structure of 
RX descriptor. The MSB of RXDES0, RXDES0[31] shows the current owner of this descriptor. 
Descriptor owner is EMAC while set 1, this means EMAC will put received packet to the address 
points by RXDES1, put received packet length in RXDES0 [15:0], and store received packet status to 
RXDES0 [30:16]. After packet received complete, EMAC automatically clears RXDES0[31] to 0, 
means the owner of this descriptor now switch to CPU. And EMAC will follow the link in RXDES3 to 
fetch next descriptor. If the owner of next descriptor is 0, then all Rx descriptor are unavailable. EMAC 
will stop its RX state machine until Rx descriptors’ ownership given back to EMAC and RX state 
machine restart. 

01531

Reserved

Receive Frame Buffer Starting Address / Time Stamp Least Significant 32-Bit

Receive Frame Status Receive Frame Byte Count

Next RxDMA Descriptor Starting Address / Time Stamp Most Significant 32-Bit

O

W

N
RXDES 0

RXDES 1

RXDES 2

RXDES 3

 

Figure 19.4-1 EMAC Rx Descriptor 

If network timestamp enabled, RXDES1 and RXDES3 will be used to store packet receive time for 
user level application calculate network time. So after packet received, driver needs to restore the 
pointer value in RXDES1, RXDES3 before set RXDES0[31] to 1. This also means driver needs to find 
some memory space to backup these pointers. 

After driver initialized RX descriptors, it needs to fill the starting address of first descriptor into register 
EMAC_RXDLSA to notify EMAC where the descriptors are. EMAC RX state machine will start working 
and receive packet after driver set RXON(EMAC_MCMDR[0]) to 1, and write any value into register 
EMAC_RSDR. Following figure shows the RX descriptor initial flow. 

 



 NUC980 

May 2, 2019  Page 154 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Allocate word aligned non-cacheable 

memory for Rx Buffer Descriptors

Write the physical address of first Rx descriptor to 

register EMAC_RXDLSA.

Set ownership of every descriptor to EMC

Allocate non-cacheable buffers to store incoming 

packets for every descriptor, and write the buffer 

starting physical address to RXDES1 of each 

descriptor

Set the physical address of next descriptor to 

RXDES3. Last descriptor should fill this field with 

the starting address of first descriptor.    

Start

End

 
 

Figure 19.4-2 Rx Descriptor Init Flow 

In the sample code below, it also reserved two unsigned integer to back up the initial value of 
RXDES1 and RXDES3. So the driver can restore the setting after they are overwritten by time stamp. 

typedef struct _emac_descriptor 

{ 

 unsigned int  rxdes0;  

 unsigned int  rxdes1; 

 unsigned int  rxdes2; 

 unsigned int  rxdes3; 

 // for backup descriptor fields over written by time stamp 

 unsigned int  backup0; 

 unsigned int  backup1; 



 NUC980 

May 2, 2019  Page 155 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

} rx_descriptor; 

 

#define RX_DESC_SIZE  4  // Number of Rx Descriptors 

#define RX_BUF_SIZE   1518 // MAX Ethernet packet size 

 

rx_descriptor rx_desc[RX_DESC_SIZE]; 

unsigned char rx_buf[RX_DESC_SIZE][ RX_BUF_SIZE]; 

 

void rx_desc_init(void) 

{ 

 unsigned int i; 

 

 for(i = 0; i < RX_DESC_SIZE; i++) { 

  rx_desc[i].rxdes0 = (1 << 31); 

  rx_desc[i].rxdes1 = (unsigned int)(&rx_buf[i][0]); 

  rx_desc[i].backup0 = rx_desc[i].rxdes1; 

  rx_desc[i].rxdes2 = 0; 

  rx_desc[i].rxdes3 = (unsigned int)&rx_desc[(i + 1) % RX_DESC_SIZE]; 

  rx_desc[i].backup1 = rx_desc[i].rxdes3; 

 } 

 

 // Set Frame descriptor's base address. 

 EMAC_RXDLSA = (unsigned int)&rx_desc[0]; 

 

} 

 

Driver can detect packet arrival using ether polling or interrupt mode. In polling mode, driver can 
detect packet received by checking if RXGD (EMAC_MISTA[4]) is set 1. At least one packet is 
received using Rx descriptor if RXGD is 1. To use interrupt mode, driver needs to set both RXGDIEN 
(EMAC_MIEN[4]) and RXIEN(EMAC_MIEN[0]) to 1. EMAC will trigger interrupt whenever new packet 
received and also set both RXGD and RXINTR(EMAC_MISTA[0]) to 1. RXGD and RXINTEN can both 
write 1 to clear them. Flow chart below shows what driver should do after RXGD set 1. If driver is 
working in interrupt mode, this is what driver should do in the interrupt handler. 

 



 NUC980 

May 2, 2019  Page 156 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Check EMAC_MISTA

Bus Error ?

RXGD ?

Copy the received data to  buffer 

provided  by  upper protocol layer

Restore RXDES1 and RXDES3 if time stamp is enabled. 

Change ownership bits to EMAC

Follow the link in RXDES3 to next descriptor

Rx S/W Descriptor pointer the 

same with  EMAC_CRXDSA

Write EMAC_RSDR

CPU ?

Check the ownership bit (RXDES0[31]) on the last processed Rx Descriptor

Get Rx Status (RXDES0[30:16]) from the status field of Rx Descriptor.

Exit Rx ISR

Y

Y

Y

Error handling

Error handling

Y

N

N

Enter Rx ISR

N

 

Figure 19.4-3 EMAC Rx ISR Flow 

Below is an interrupt handler sample supports time stamp function. If time stamping is not enabled, the 
codes to restore descriptor pointers could be omitted. 

void RX_IRQHandler(void) 

{ 

 rx_descriptor *desc; 

 unsigned int status, len, reg; 

 reg = EMAC_MISTA; 

 

 // Get last Rx Descriptor 

 desc = (rx_descriptor *)current_rx_desc; 



 NUC980 

May 2, 2019  Page 157 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 do { 

 

  if(EMAC0->CRXDSA == (unsigned int)desc) 

   break; 

 

  if((desc->rxdes0 | (1<<31)) == (1<<31)) { // ownership=CPU 

   status = (desc->rxdes0 >> 16) & 0xffff; 

 

   // If Rx frame is good, then process received frame 

   if(status & RXFD_RXGD) { 

    len = desc->rxdes0 & 0xffff; 

    recv_pkt(desc->backup0, len); 

   } else { 

    // error handling 

   } 

  } else 

   break; 

 

  if(status & RTSAS) { 

   // store time stamp 

   log_time_stamp(desc->rxdes1, desc->rxdes3); 

  }  

 

  // restore descriptor link list 

  desc->rxdes1 = desc->backup0; 

  desc->rxdes3 = desc->backup1; 

 

  // Change ownership to EMAC for next use 

  desc->rxdes0 |= (1 << 31); 

  // Get Next Frame Descriptor pointer to process 

  desc = (mac_descriptor *)desc->rxdes3; 

 } while (1); 

 

 // store last processed descriptor. Next interrupt needs it 

 current_rx_desc = (unsigned int)desc; 

 

 // Trigger Rx 

 EMAC_RDSR = 0; 

 // Clear Rx related interrupt status 

 EMAC_MISTA = reg & 0x0000ffff; 

} 



 NUC980 

May 2, 2019  Page 158 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Packet Transmit 

The same with packet receiving, EMAC also needs descriptors to transmit Ethernet packets. Driver 
needs to prepare Tx descriptor in advance. When receive a command to send out a packet from 
protocol stack, driver put the packet to where a pointer in descriptor points to, set the packet length in 
descriptor, and then trigger EMAC to transmit the packet. After transmit complete EMAC will use next 
descriptor to transmit packet. So Tx descriptor is where CPU and EMAC used to exchange the 
information of transmitted packets 

Each descriptor occupied 4 words. All descriptors form a link list. Figure below shows the structure of 
RX descriptor. The MSB of TXDES0, TXDES0[31] shows the current owner of this descriptor. If this bit 
set 1, EMAC will transmit the packet points to by TXDES1 for total TXDES2[15:0] bytes. After transmit 
complete, no matter success or failed, the result will be stored in RXDES2 [30:16] and TXDES0[31] 
will be cleared to 0, which means the packet is processed. EMAC then will follow the pointer stored in 
TXDES3 to fetch next Tx descriptor. If the TXDES0[31] of next descriptor is 0, it means all transmit 
packets are processed, no more packet need to be send. In this case, EMAC will halt it transmit state 
machine. But if TXDES0[31] is 1, EMAC will repeat the transmit procedure list above. 

 

01531

Transmit Frame Buffer Starting Address / Time Stamp Least Significant 32-Bit

P

Next TxDMA Descriptor Starting Address / Time Stamp Most Significant 32-Bit

O

W

N
TXDES 0

TXDES 1

TXDES 2

TXDES 3

1

C

2

I

3

TReserved

Transmit Frame Status Transmit Frame Byte Count

 

Figure 19.4-4 EMAC Tx Descriptor 

If network timestamp enabled, TXDES1 and TXDES3 will be used to store packet transmit time for 
user level application calculate network time. So after packet transmitted, driver needs to restore the 
pointer value in TXDES1, TXDES3 before set TXDES0[31] to 1. This also means driver needs to find 
some memory space to backup these pointers. 

After driver initialized TX descriptors, it needs to fill the starting address of first descriptor into register 
EMAC_TXDLSA to notify EMAC where the descriptors are. EMAC TX state machine will start working 
and start transmit packet after driver set TXON(EMAC_MCMDR[8]) to 1, and write any value into 
register EMAC_TSDR. Following figure shows the TX descriptor initial flow. 

 



 NUC980 

May 2, 2019  Page 159 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Allocate word aligned non-cacheable 

memory for Tx Buffer Descriptors

Write the physical address of first Tx descriptor to 

Register EMAC_TXDLSA.

Set ownership of every descriptor to CPU

Allocate non-cacheable buffers for 

every descriptor, and write the buffer starting 

physical address to TXDES1 of each descriptor 

(Optional, can set the buffer before actual transfer)

Set the physical address of next descriptor to 

TXDES3. Last descriptor  should fill this field with 

the starting address of first descriptor.    

Start

End

Set T, I,C, and P bit of each descriptor (Optional 

here but must be set before packet send out )

 

Figure 19.4-5 Tx Descriptor Init Flow 

In the TX descriptor initialize sample code below, it reserved the space for backup TXDES1 and 
TXDES3 initial value, so driver can restore them after overwritten by time stamp. 

typedef struct _emac_descriptor 

{ 

 unsigned int  txdes0;  

 unsigned int  txdes1; 

 unsigned int  txdes2; 

 unsigned int  txdes3; 

 // for backup descriptor fields over written by time stamp 

 unsigned int  backup0; 



 NUC980 

May 2, 2019  Page 160 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 unsigned int  backup1; 

} tx_descriptor; 

 

#define TX_DESC_SIZE  4  // Number of Tx Descriptors 

 

tx_descriptor tx_desc[TX_DESC_SIZE]; 

 

void tx_desc_init(void) 

{ 

 unsigned int i; 

 

 for(i = 0; i < TX_DESC_SIZE; i++) { 

  tx_desc[i].txdes0 = (1 << 31); 

  tx_desc[i].txdes1 = 0; 

  tx_desc[i].backup0 = tx_desc[i].txdes1; 

  tx_desc[i].txdes2 = 0; 

  tx_desc[i].txdes3 = (unsigned int)&tx_desc[(i + 1) % TX_DESC_SIZE]; 

  tx_desc[i].backup1 = tx_desc[i].rxdes3; 

 } 

 

 // Set Frame descriptor's base address. 

 EMAC_TXDLSA = (unsigned int)&tx_desc[0]; 

 

} 

 

Except the descriptor setting mentions previously, TXDES0[3:0] also needs to be configured to send a 
packet. TTSEN(TXDES0[3]) is used to enable time stamp function. If this bit set to 1, the network time 
after transmit complete will be recorded in TXDES1 and TXDES3. INTEN(TXDES0[2]) used to 
configure  if interrupt should be triggered after transmit this packet. EMAC only triggers interrupt if this 
bit is 1 and the setting in EMAC_MISTA enabled transmit interrupt. CRCAPP(TXDES0[1]) controls if 
EMAC calculate the CRC for transmitted packet or not. This bit should set to 1 in normal operation. 
Minimum Ethernet packet size is 60 bytes (without 4 bytes CRC). EMAC will help to pad packet to 60 
bytes if the packet length is shorter than 60 bytes if PADEN (TXDES0[1]) is set to 1. This bit should 
set to 1 during normal operation. Following flow chart shows the network transmitting procedure with 
time stamping enabled. 



 NUC980 

May 2, 2019  Page 161 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Get a Tx Buffer  Descriptor from Tx Software Buffer 

Descriptor Pointer

Check ownership bits, CPU ?
Run out of  Descriptors, 

Exception Handling

Set TXDES1 with the physical starting address to the 

packet to be transfer

Set T, I, C, P bits if needed

Set length of the packet to TXDES2[15:0]

Set TXDES0[31] to 1

Set TXON bit of MCMDR register if it is not set

Write TSDR register with any value

N

Y

 

Figure 19.4-6 EMAC Packet Transmit 

Below is a sample code shows the procedure to send a packet. 

int send_pkt(unsigned char *data, unsigned int size) 

{ 

 tx_descriptor *desc; 

 unsigned int status; 

 

 // Get Tx frame descriptor & data pointer 

 desc = (tx_descriptor *)next_tx_desc; 



 NUC980 

May 2, 2019  Page 162 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

 status = desc->txdes0; 

 

 // Check ownership, return if owner is EMAC 

 if(status & (1 << 31))  

  return -1; 

 // Fill data pointer 

 desc->txdes1 = (unsigned int)(data); 

 

 // Set TX Frame flag & Length Field 

 desc->txdes0 |= (P | C | I | T); 

 desc->txdes2 = size; 

 

 // Cheange ownership to DMA 

 desc->txdes0 |= (1 << 31); 

 

 // Find next Tx descriptor, do it here before time stamp update pointers 

 next_tx_desc = desc->txdes3; 

 // Trigger TX 

 EMAC_TDSR = 0; 

 

 Return 0; 

} 

 

Network transmit result could be checked by polling mode or interrupt mode. In polling mode, driver 
checks TXCP (EMAC_MISTA[18]) bit. Whenever this bit set 1, at least one packet was transmitted, no 
matter success or not. In interrupt mode, both TXCPIEN (EMAC_MIEN[18]) and 
TXIEN(EMAC_MIEN[16]) needs to be set 1. Whenever packet transmit complete, EMAC wills trigger 
interrupt, and set both TXCP and TXINTR(EMAC_MISTA[16]) to 1. These two bits, TXCP and 
TXINTR could be cleared by writing 1 to them. Following figure shows what driver should do after 
TXCP set 1. In interrupt mode, these are what interrupt handler should do. 

 



 NUC980 

May 2, 2019  Page 163 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Check status of EMAC_MISTA

Bus Error ? Error handling

Get TXDES2[31:16] status from 

last processed Tx descriptor

TXCP bit set ?

Restore TXDES1 and TXDES3 if 

time stamp enabled. 

Follow TXDES3 to next Tx 

descriptor

Error handling

Enter Tx ISR

End of Tx ISR

N

Y

N

Y

Tx S/W pointer equals to 

register EMAC_CTXDSA?

Y

N

 

Figure 19.4-7 EMAC Tx ISR Flow 

Below is an example of interrupt handler that supports time stamping function. 

void TX_IRQHandler(void) 

{ 

 tx_descriptor *desc; 

 unsigned int status, reg; 

 unsigned int last_tx_desc; 

 

 reg = EMAC0->MISTA; 

 // Time stamp alarm interrupt 

 if(reg & MISTA_TSALS) { 



 NUC980 

May 2, 2019  Page 164 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

  // Do something here 

 } 

 // Clear Tx related interrupt flags 

 EMAC0->MISTA = reg & 0xffff0000; 

 

 last_tx_desc = EMAC_CTXDSA; 

 desc = current_tx_desc; 

 

 while (last_tx_desc != (unsigned int)desc) {  

 // we have packet to process 

  status = desc->txdes2 >> 16; 

  if (status & TXCP) { 

   // Success. 

  } else { 

   // Failed, error handling 

  } 

  if(status & TTSAS) { 

   // process time stamp 

   log_time_stamp(desc->txdes1, desc->txdes3); 

  } 

 

  // restore descriptor link list and data pointer 

  desc->txdes1 = desc->backup0; 

  desc->txdes3 = desc->backup1; 

 

  // find next Tx descriptor 

  desc = (mac_descriptor *)desc->txdes3;  

 } 

 // store last processed descriptor. Next interrupt needs it 

 current_tx_desc = (unsigned int)desc; 

 

} 

 Network Timing 

To support more accurate IEEE1588 network timing on NUC980, both EMAC built in time stamping 
module. The time stamping module could record the exact packet received and transmitted time and 
reduces the bias error if time stamp get by software in interrupt handler. The time stamping modules 
update their time every EMAC clock. So it is 150 MHz at most, which is the finest clock in this system. 
Time stamp modules supports two update methods, fine update and cores update, which is 
configurable by TSMODE (EMAC_TSCTL[2]) bit. Clear 0 to select cores update, set 1 to select fine 
update. 

NUC980 uses second and sub-second as time unit in time stamp module. Current time increased 1 
second every time sub-second overflows. In cores update mode, current sub-second value increased 



 NUC980 

May 2, 2019  Page 165 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

by the value stored in register EMAC_TSINC on every EMAC clock tick. 

Taking EMAC clock frequency 150 MHz as example to calculate the relative registers setting here. 
Since the clock rate is 150 MHz, sub-second file should overflow every 150M clock tick to increase the 
second field. Sub-second register use 31 bits to store sub-second, so EMAC_TSINC should fill with 
(231) / 150M = 14.31 ~= 14 = 0x0E, this is the sub-second value should increase on every EMAC clock 
tick. But if 0x0E is used, clock bias will be 0.31/14 = 2.2% which is impractical to use. So it is not 
recommend using cores update while EMAC clock is 150 MHz. 

In fine update mode, an internal 32-bit counter will add the value stored in register 
EMAC_TSADDNED on every EMAC clock tick. When this counter overflows, sub-second value will 
increase the value stored in register EMAC_TSINC. So find update mode is more accurate than cores 
update mode. 

Here use EMAC clock frequency 150 MHz as condition to calculate time stamp registers setting in fine 
update mode. Assuming we want to increase EMAC_TSINC value every 100ns, so sub-second needs 
to overflow after added for 107 times, so EMAC_TSINC needs to fill in 231 / 107 = 214.71 ~= 215 = 
0xD7. The actual overflow frequency is not exact 107 Hz as expected but 231 / 215 Hz. So needs to fill 
EMAC_TSADDNED with a value that makes counter overflow at the frequency of 231 / 215 Hz to make 
timing accurate. This means value fill to EMAC_TSADDNED has to be 232 * (231 / 215) / 150M = 
285996032.15 ~= 285996032 = 0x110BF400. In this case, the bias error is 5.26 * 10-10, which is much 
better comparing with cores update. It is recommended using fine update mode for timing update. 

Based on the calculation above, the setting of EMAC_TSINC and EMAC_TSADDEND while EMAC 
clock is 150 MHz listed below. (Different from cores update mode, the setting is not the only valid 
value. But different EMAC_TSINC needs to use different EMAC_TSADDNED value): 

EMAC_TSINC = 0xD7; 

EMAC_TSADDEND = 0x110BF400; 

Following figure shows network timestamp update block diagram. 

Time Stamp Addend Register

(EMAC_TSADDNED)

Accumulator

+

Overflow

01

TSMODE

(EMAC_TSCTL[2])

1'b1

Time Stamp Counter Sub Second 

Register (EMAC_TSSUBSEC)
Increase

+

Time Stamp Increment Register 

(EMAC_TSINC)

Increase
Time Stamp Counter Second Register 

(EMAC_TSSEC)

32-bit

32-bit

+

1'b1

 

Figure 19.4-8 EMAC Time Stamp Calculation 

In sub-second operation, every overflow (bit 31 becomes 1) means 1 second elapsed. In other words, 
every 231 sub-second is 1 second or 109 nanoseconds. The functions below show how to convert 
between sub-second and nanosecond using the calculation above. 



 NUC980 

May 2, 2019  Page 166 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

static unsigned int subsec2nsec(unsigned int subsec) 

{ 

 // 2^31 subsec == 10^9 ns 

 unsigned long long i; 

 i = 1000000000ll * subsec; 

 i >>= 31; 

 return(i); 

} 

 

static unsigned int nsec2subsec(unsigned int nsec) 

{ 

 // 10^9 ns =  2^31 subsec 

 unsigned long long i; 

 i = (1ll << 31) * nsec; 

 i /= 1000000000; 

 return(i); 

} 

 

Steps toward network timestamp initialization listed below: 

1. Set TSEN(EMAC_TSCTL[0]) to 1, enable network timestamp circuit. 

2. Fill initial second and sub-second value into EMAC_TSSEC and EMAC_TSSUBSEC registers 

3. Configure EMAC_TSINC register, and configure EMAC_TSADDEND to use fine update mode. 

4. Set TSIEN (EMAC_TSCTL[1]) 1 to start network timestamp counting, to use fine update, set  
TSMODE (EMAC_TSCTL[2]) to 1 too. 

According to IEEE 1588 specification, when a device has multiple network interfaces, they must share 
the same clock source. So if timestamp modules on both NUC980’s EMACs are enabled, driver must 
set PTP_SRC (EMAC_MCMDR[7]) of EMAC1 to 1, this will let EMAC1 use EMAC0’s timestamp 
module instead of using its own timestamp module. 

Software can read current network time via registers. Current network time is store in tow 32-bit 
registers, EMAC_TSSEC and EMAC_TSSUBSEC. There is a circuit to avoid the situation that sub-
second overflow while reading sub-second register. While read EMAC_TSSUBSEC register, the 
current second value will be locked in EMAC_TSSEC register at the same time, to avoid software 
uses incorrect time value for operation. Below is a sample code for reading current time value: 

unsigned int s, subs; 

 

// Read sub second first. 

subs = EMAC_TSSUBSEC; 

s = EMAC_TSSEC; 

 

printf("current time is %d second %d nano-second\n", s, subsec2nsec(subs)); 

 

Software can adjust current network time after time stamp module initialized. To maintain accurate 



 NUC980 

May 2, 2019  Page 167 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

timing, network time adjust current time using an offset value. For example, if current time is 3 second 
too fast, the adjust method does not require a read-modify-write. The executing time of software also 
needs to take into consideration and it could be affected by some factors. This unpredictable brings 
error to current time, and has bad impact to PTP which requires precise timing. The time stamp 
module can add or subtract an offset from current time. Second level offset fills into register 
EMAC_UPDSEC, sub-second level offset fills into EMAC_UPDSUBSEC[30:0]. If this is positive offset, 
EMAC_UPDSUBSEC[31] keep 0, on the contrary set EMAC_UPDSUBSEC[31] to 1 for negative 
offset. After both EMAC_UPDSEC and EMAC_UPDSUBSEC fill with proper offset setting, set 
TSUPDATE(EMAC_TSCTL[3]) to 1 to trigger time stamp module to update network time. This bit auto 
clears to 0 after update complete. 

Time stamp module also has alarm feature. Alarm trigger time fills in EMAC_ALMSEC and 
EMAC_ALMSUBSEC registers. They store the alarm trigger second and sub-second respectively. 
After alarm time configured, set TSALMEN (EMAC_TSCTL[5]) to 1 to enable alarm function. If 
TSALMIEN (EMAC_MIEN[28]) is 1, an interrupt will be triggered when alarm occurs and 
TSALS(EMAC_MISTA[28]) will be set 1. Software can write 1 to clear this bit. Note: This interrupt is 
designed as a Tx interrupt, and needs to be processed in Tx interrupt handler instead of Rx interrupt 
handler. 

 Error Handling 

Some status bits in EMAC_MISTA register reflect status error during normal operation. Following table 
lists error status and the solutions. 

Error Bit 
Name 

Bit 
Number 

Status Description Solution 

TXBERR 24 Transmit bus error Check driver. This error flag can only be 
triggered when EMAC follows incorrect pointer 
TX descriptor in to fetch data.  

TDU 23 Transmit description 
unavailable 

Do not need to take action. This flag means no 
more packets need to be sent. 

TXABT 21 Transmit abort Probably caused by heavy network loading. 

TXEMP 17 Transmit FIFO 
unavailable 

If this flag set frequently, set 
TXTHD(EMAC_FFTCR[9:8]) to a higher trigger 
level. 

RXBERR 11 Receive bus error Check driver. This error flag can only be 
triggered when EMAC follows incorrect pointer 
RX descriptor in to fetch data. 

RDU 10 Receive description 
unavailable 

This flag set 1 because software cannot process 
received packets in RX descriptor thus EMAC 
has no more free descriptor to receive further 
incoming packets. 

To trigger EMAC RX state machine to receive 
packet after RDU state occurred, software 
needs to receive all received packets, set 
ownership of RX descriptors to EMAC, and write 
any value into EMAC_RSDR. 

Packet comes in too fast before driver can 
process them, or RX interrupt blocked too long 
and could not get a chance to execute before 
RX descriptors runs out can both trigger this 



 NUC980 

May 2, 2019  Page 168 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

state. 

RP 6 Received short packet 
( < 64 bytes) 

Simply drop this packet. Does not occur during 
normal operation unless ARP 
(EMAC_MCMDR[2]) set 1. 

ALIE 5 Alignment error Should not occur during normal operation. 
Please check RMII related circuit on PCB board 
or try another Ethernet cable if this flag set 
frequently. 

PTLE 3 Received long packet ( > 
1518 bytes) 

Simply drop this packet. Does not occur during 
normal operation unless ALP 
(EMAC_MCMDR[1]) set 1. 

RXOV 2 Receive FIFO overflow If this flag set frequently, set 
RXTHD(EMAC_FFTCR[1:0]) to a higher trigger 
level. 

CRCE 1 CRC error Simply drop this packet. Does not occur during 
normal operation unless AEP 
(EMAC_MCMDR[4]) set 1. 

Table 19.4-1 EMAC Erro Handling  

 

  



 NUC980 

May 2, 2019  Page 169 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

19.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

EMAC0_BA = 0xB001_2000 

EMAC1_BA = 0xB002_2000 

EMAC_CAMCMR EMAC_BA+0x000 R/W CAM Command Register 0x0000_0000 

EMAC_CAMEN EMAC_BA+0x004 R/W CAM Enable Register 0x0000_0000 

EMAC_CAM0M EMAC_BA+0x008 R/W CAM0 Most Significant Word Register 0x0000_0000 

EMAC_CAM0L EMAC_BA+0x00C R/W  CAM0 Least Significant Word Register 0x0000_0000 

EMAC_CAM1M EMAC_BA+0x010 R/W CAM1 Most Significant Word Register 0x0000_0000 

EMAC_CAM1L EMAC_BA+0x014 R/W CAM1 Least Significant Word Register 0x0000_0000 

EMAC_CAM2M EMAC_BA+0x018 R/W CAM2 Most Significant Word Register 0x0000_0000 

EMAC_CAM2L EMAC_BA+0x01C R/W CAM2 Least Significant Word Register 0x0000_0000 

EMAC_CAM3M EMAC_BA+0x020 R/W CAM3 Most Significant Word Register 0x0000_0000 

EMAC_CAM3L EMAC_BA+0x024 R/W CAM3 Least Significant Word Register 0x0000_0000  

EMAC_CAM4M EMAC_BA+0x028 R/W CAM4 Most Significant Word Register 0x0000_0000 

EMAC_CAM4L EMAC_BA+0x02C R/W CAM4 Least Significant Word Register 0x0000_0000 

EMAC_CAM5M EMAC_BA+0x030 R/W CAM5 Most Significant Word Register 0x0000_0000 

EMAC_CAM5L EMAC_BA+0x034 R/W CAM5 Least Significant Word Register 0x0000_0000 

EMAC_CAM6M EMAC_BA+0x038 R/W CAM6 Most Significant Word Register 0x0000_0000 

EMAC_CAM6L EMAC_BA+0x03C R/W CAM6 Least Significant Word Register 0x0000_0000 

EMAC_CAM7M EMAC_BA+0x040 R/W CAM7 Most Significant Word Register 0x0000_0000 

EMAC_CAM7L EMAC_BA+0x044 R/W CAM7 Least Significant Word Register 0x0000_0000 

EMAC_CAM8M EMAC_BA+0x048 R/W CAM8 Most Significant Word Register 0x0000_0000 

EMAC_CAM8L EMAC_BA+0x04C R/W CAM8 Least Significant Word Register 0x0000_0000 

EMAC_CAM9M EMAC_BA+0x050 R/W CAM9 Most Significant Word Register 0x0000_0000 

EMAC_CAM9L EMAC_BA+0x054 R/W CAM9 Least Significant Word Register 0x0000_0000 

EMAC_CAM10M EMAC_BA+0x058 R/W CAM10 Most Significant Word Register 0x0000_0000 

EMAC_CAM10L EMAC_BA+0x05C R/W CAM10 Least Significant Word Register 0x0000_0000 

EMAC_CAM11M EMAC_BA+0x060 R/W CAM11 Most Significant Word Register 0x0000_0000 

EMAC_CAM11L EMAC_BA+0x064 R/W CAM11 Least Significant Word Register 0x0000_0000 

EMAC_CAM12M EMAC_BA+0x068 R/W CAM12 Most Significant Word Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 170 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

EMAC_CAM12L EMAC_BA+0x06C R/W CAM12 Least Significant Word Register 0x0000_0000 

EMAC_CAM13M EMAC_BA+0x070 R/W CAM13 Most Significant Word Register 0x0000_0000 

EMAC_CAM13L EMAC_BA+0x074 R/W CAM13 Least Significant Word Register 0x0000_0000 

EMAC_CAM14M EMAC_BA+0x078 R/W CAM14 Most Significant Word Register 0x0000_0000 

EMAC_CAM14L EMAC_BA+0x07C R/W CAM14 Least Significant Word Register 0x0000_0000 

EMAC_CAM15M EMAC_BA+0x080 R/W CAM15 Most Significant Word Register 0x0000_0000 

EMAC_CAM15L EMAC_BA+0x084 R/W CAM15 Least Significant Word Register 0x0000_0000 

EMAC_TXDLSA EMAC_BA+0x088 R/W Transmit Descriptor Link List Start Address Register 0xFFFF_FFFC 

EMAC_RXDLSA EMAC_BA+0x08C R/W Receive Descriptor Link List Start Address Register 0xFFFF_FFFC 

EMAC_MCMDR EMAC_BA+0x090 R/W MAC Command Register 0x0040_0000 

EMAC_MIID EMAC_BA+0x094 R/W MII Management Data Register 0x0000_0000 

EMAC_MIIDA EMAC_BA+0x098 R/W MII Management Control and Address Register 0x0000_0000 

EMAC_FFTCR EMAC_BA+0x09C R/W FIFO Threshold Control Register 0x0000_0000 

EMAC_TSDR EMAC_BA+0x0A0 W Transmit Start Demand Register Undefined 

EMAC_RSDR EMAC_BA+0x0A4 W Receive Start Demand Register Undefined 

EMAC_DMARFC EMAC_BA+0x0A8 R/W Maximum Receive Frame Control Register 0x0000_0800 

EMAC_MIEN EMAC_BA+0x0AC R/W MAC Interrupt Enable Register 0x0000_0000 

EMAC_MISTA EMAC_BA+0x0B0 R/W MAC Interrupt Status Register 0x0000_0000 

EMAC_MGSTA EMAC_BA+0x0B4 R/W MAC General Status Register 0x0000_0000 

EMAC_MPCNT EMAC_BA+0x0B8 R/W Missed Packet Count Register 0x0000_7FFF 

EMAC_MRPC EMAC_BA+0x0BC R MAC Receive Pause Count Register 0x0000_0000 

EMAC_DMARFS EMAC_BA+0x0C8 R/W DMA Receive Frame Status Register 0x0000_0000 

EMAC_CTXDSA EMAC_BA+0x0CC R Current Transmit Descriptor Start Address Reg. 0x0000_0000 

EMAC_CTXBSA EMAC_BA+0x0D0 R Current Transmit Buffer Start Address Register 0x0000_0000 

EMAC_CRXDSA EMAC_BA+0x0D4 R Current Receive Descriptor Start Address Reg. 0x0000_0000 

EMAC_CRXBSA EMAC_BA+0x0D8 R Current Receive Buffer Start Address Register 0x0000_0000 

EMAC_TSCTL EMAC_BA+0x100 R/W Time Stamp Control Register 0x0000_0000 

EMAC_TSSEC EMAC_BA+0x110 R Time Stamp Counter Second Register 0x0000_0000 

EMAC_TSSUBSEC EMAC_BA+0x114 R Time Stamp Counter Sub Second Register 0x0000_0000 

EMAC_TSINC EMAC_BA+0x118 R/W Time Stamp Increment Register 0x0000_0000 

EMAC_TSADDEND EMAC_BA+0x11C R/W Time Stamp Addend Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 171 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

EMAC_UPDSEC EMAC_BA+0x120 R/W Time Stamp Update Second Register 0x0000_0000 

EMAC_UPDSUBSE
C 

EMAC_BA+0x124 R/W Time Stamp Update Sub Second Register 0x0000_0000 

EMAC_ALMSEC EMAC_BA+0x128 R/W Time Stamp Alarm Second Register 0x0000_0000 

EMAC_ALMSUBSE
C 

EMAC_BA+0x12C R/W Time Stamp Alarm Sub Second Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 172 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

20 USB 2.0 DEVICE CONTROLLER (USBD) 

20.1 Overview 

The USB device controller interfaces the AHB bus and the UTMI bus. The USB controller contains 
both the AHB master interface and AHB slave interface. CPU programs the USB controller registers 
through the AHB slave interface. For IN or OUT transfer, the USB device controller needs to write data 
to memory or read data from memory through the AHB master interface. The USB device controller is 
compliant with USB 2.0 specification and it contains 12 configurable endpoints in addition to control 
endpoint. These endpoints could be configured to BULK, INTERRUPT or ISO. The USB device 
controller has a built-in DMA to relieve the load of CPU. 

20.2 Features 

 USB Specification reversion 2.0 compliant 

 Supports 12 configurable endpoints in addition to Control Endpoint 

 Each of the endpoints can be Isochronous, Bulk or Interrupt and either IN or OUT 
direction 

 Three different operation modes of an in-endpoint － Auto Validation mode, Manual 

Validation mode, Fly mode 

 Supports DMA operation 

 4096 Bytes Configurable RAM used as endpoint buffer 

 Supports Endpoint Maximum Packet Size up to 1024 bytes 

20.3 Block Diagram 

USB 2.0 
Protocol 

controller

4K Buffer

USB 
transceiver

UTMI 
interface

12-EPs

DMA 
registers

Control-
EP

Registers

USB Device Controller

USB_DP

USB_DM

AHB Bus

 

Figure 20.3-1 USB Device Controller Block Diagram 

 

  



 NUC980 

May 2, 2019  Page 173 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

20.4 Functional Description 

The USB device controller is compliant with USB 2.0 specification. User can simulate the device as a 
mass storage card reader, virtual COM port, etc. Refer to “USB Class Specification” for more detail. 

There are three different modes for IN-transfer operation: 

 Auto-Validation Mode – When transfer data length is equal to the maximum packet size, 
user can choose this mode. (Such as Bulk pipe transfer) 

 Manual-Validation Mode – This mode requires intervention of CPU for each transfer. 
When transfer data length is not fixed, user can choose this mode. (Such as Interrupt 
pipe transfer) 

 Fly Mode – This mode is best suited for isochronous data transfer, where the speed of 
data transfer is more important than the packet size. (Such as Isochronous pipe transfer) 

The following sections will be a USB mass storage device as an example. This device needs two 
endpoints – Endpoint A is Bulk IN, Endpoint B is Bulk Out. 

 

 Initialization 

USB device controller initialize, please follow the steps below: 

1. Set multiple function pin GPE11. Fill 0x1 to SYS_GPE_MFPL register GPE11 bit. 

2. Set CLK_HCLKEN register USBD bit. 

3. Set HSUSBD_PHYCTL register PHYEN bit to enable USB PHY. 

4. Fill 0x8 to HSUSBD_EPAMPS register. Polling HSUSBD_EPAMPS register until read data is 
0x8. It means PHY clock stable. 

5. Configure endpoint A to Bulk-IN type, endpoint number 1. 

1) Set HSUSBD_EPARSPCTL register MODE bit to 0 to select auto-validation mode. 

2) Fill 512 to HSUSBD_EPAMPS register. It means the maximum packet size is 512 bytes 

3) Set HSUSBD_EPACFG register EPNUM bit to 1, EPDIR bit to 1, EPTYPE bit to 01b and 
EPEN bit to 1 

4) Fill 0x200 to HSUSBD_EPABUFSTART register. 0x3FF to HSUSBD_EPABUFEND 
register. It means this endpoint FIFO length is 512 bytes 

6. Configure endpoint B to Bulk-Out type, endpoint number 2 

1) Set HSUSBD_EPBINTEN register RXPKIEN bit to enable data receive interrupt. 

2) Set HSUSBD_EPBRSPCTL register MODE bit to 0 to select auto-validation mode 

3) Fill 512 to HSUSBD_EPBMPS register. It means the maximum packet size is 512 bytes 

4) Set HSUSBD_EPBCFG register EPNUM bit to 2, EPDIR bit to 0, EPTYPE bit to 01b and 
EPEN bit to 1 

5) Fill 0x400 to HSUSBD_EPBBUFSTART register. 0x5FF to HSUSBD_EPBBUFEND 
register. It means this endpoint FIFO length is 512 bytes 

7. Set HSUSBD_GINTEN register USBIEN, CEPIEN, EPAIEN and EPBIEN bit to enable USB 
bus, control endpoint, endpoint A and endpoint B interrupt 

8. Set HSUSBD_BUSINTEN register RSTIEN, RESUMEIEN, DMADONEIEN and VBUSDETIEN 
bit to enable USB reset, resume, DMA complete and floating detect interrupt 

9. Set HSUSBD_OPER register HISPDEN bit to enable high speed mode 



 NUC980 

May 2, 2019  Page 174 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

10. Clear HSUSBD_FADDR register 

11. Configure control endpoint (EP0) 

1) Fill 0x0 to HSUSBD_CEPBUFSTART register. 0x7F to HSUSBD_CEPBUFEND register. 
It means this endpoint FIFO length is 128 bytes. 

2) Set HSUSBD_CEPINTEN register SETUPPKIEN and STSDONEIEN bit to enable EP0 
setup packet and setup status done interrupt 

12. Polling HSUSBD_PHYCTL register VBUSDET bit until it was set. It means device connect to 
host. Set HSUSBD_PHYCTL register DPPUEN bit to clear SE0 

 Interrupt Service Routine 

USBD control interrupt processing as follow: 

1. Read HSUSBD_GINTSTS register and HSUSBD_GINTEN register to mask. User can get the 
interrupt information. 

2. Read HSUSBD_BUSINTSTS register and HSUSBD_BUSINTEN register to mask. If match, it 
means USB BUS interrupt occurred. 

3. Read HSUSBD_CEPINTSTS register and HSUSBD_CEPINTEN register to mask. If match, it 
means control endpoint interrupt occurred. 

4. Read HSUSBD_EPAINTSTS register and HSUSBD_EPAINTEN register to mask. If match, it 
means endpoint A interrupt occurred. 

5. Read HSUSBD_EPBINTSTS register and HSUSBD_EPBINTEN register to mask. If match, it 
means endpoint B interrupt occurred. 

 Standard Request 

USBD Controller process the Standard Request 

1. Control endpoint setup packet interrupt occurred. 

2. Read HSUSBD_SETUP1_0, HSUSBD_SETUP3_2, HSUSBD_SETUP5_4 and 
HSUSBD_SETUP7_6 register to get the setup packet information 

3. Analysis of the request. It supports, clear the NAK. (Set HSUSBD_CEPCTL register NAKCLR 
bit) and wait the status complete. Otherwise, send STALL to host. (Set HSUSBD_CEPCTL 
register STALLEN bit) 

 Set Address Request 

USBD controller processes the “Set Address” request: 

1. Control endpoint setup packet interrupt occurred. 

2. Read HSUSBD_SETUP1_0, HSUSBD_SETUP3_2, HSUSBD_SETUP5_4 and 
HSUSBD_SETUP7_6 register to get the setup packet information 

1) Get bmRequestType from HSUSBD_SETUP1_0 register low byte 

2) Get bRequest from HSUSBD_SETUP1_0 register high byte 

3) Get wValue from HSUSBD_SETUP3_2 register 

4) Get wIndex from HSUSBD_SETUP5_4 register 

5) Get wLength from HSUSBD_SETUP7_6 register 

3. Get the address from wValue 



 NUC980 

May 2, 2019  Page 175 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4. Clear NAK (Set HSUSBD_CEPCTL register NAKCLR bit) 

5. Set HSUSBD_CEPINTSTS register STSDONEIF bit to 1 to clear status complete interrupt. 
Set HSUSBD_CEPINTEN register STSDONEIEN bit to 1 to enable interrupt 

6. Waiting for status complete interrupt occurred 

1) Set HSUSBD_CEPINTEN register SETUPPKIEN bit to enable setup packet interrupt 

2) Fill address to HSUSBD_FADDR register 

3) Set HSUSBD_CEPINTSTS register STSDONEIF bit to 1 to clear status complete 
interrupt 

 Get Descriptor 

USBD controller processes the “Get Descriptor” request: 

1. Control endpoint setup packet interrupt occurred. 

2. Read HSUSBD_SETUP1_0, HSUSBD_SETUP3_2, HSUSBD_SETUP5_4 and 
HSUSBD_SETUP7_6 register to get the setup packet information 

1) Get bmRequestType from HSUSBD_SETUP1_0 register low byte 

2) Get bRequest from HSUSBD_SETUP1_0 register high byte 

3) Get wValue from HSUSBD_SETUP3_2 register 

4) Get wIndex from HSUSBD_SETUP5_4 register 

5) Get wLength from HSUSBD_SETUP7_6 register 

3. Get the descriptor type from wValue 

4. Check wLength and descriptor length 

5. Fill 1 to HSUSBD_CEPINTSTS register STSDONEIF and INTKIF bit to clear interrupt. Set 
HSUSBD_CEPINTEN register STSDONEIEN and INTKIEN bit to enable interrupt 

6. Waiting for IN-token interrupt occurred 

1) Fill 1 to HSUSBD_CEPINTSTS register STSDONEIF and TXPKIF bit to clear interrupt. 
Set HSUSBD_CEPINTEN register STSDONEIEN and TXPKIEN bit to enable interrupt. 

2) Write descriptor data into HSUSBD_CEPDAT register 

3) Write descriptor length into HSUSBD_CEPTXCNT register to trigger data out 

7. Fill 1 to HSUSBD_CEPINTSTS register INTKIF bit to clear interrupt 

8. Waiting for TX interrupt occurred 

1) Fill HSUSBD_CEPINTSTS register STSDONEIF and TXPKIF bit to clear interrupt. 

2) Clear NAK (Set HSUSBD_CEPCTL register NAKCLR bit) 

3) Fill 1 to HSUSBD_CEPINTSTS register STSDONEIF bit to clear status complete 
interrupt. 

4) Set HSUSBD_CEPINTEN register STSDONEIEN and SETUPPKIEN bit to enable 
interrupt 

9. Waiting for status complete interrupt occurred 

1) Set HSUSBD_CEPINTEN register SETUPPKIEN bit to enable setup packet interrupt 

2) Fill 1 to HSUSBD_CEPINTSTS register STSDONEIF bit to clear status complete interrupt 



 NUC980 

May 2, 2019  Page 176 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 IN Transmission 

USBD controller handles IN transmission through DMA: 

1. Set HSUSBD_DMACTL register DMARD bit to 1 for DMA read. Fill the endpoint number to 
HSUSBD_DMACTL register EPNUM bit. 

2. Check the transfer length. If transfer length is greater than DMA count, user needs to separate 
the transmission 

3. Set HSUSBD_EPxINTEN register TXPKIEN bit to enable the data transmit interrupt 

4. Check whether FIFO empty or not. (HSUSBD_EPxINTSTS register BUFEMPTYIF bit is 1) 

5. Set HSUSBD_BUSINTEN register RSTIEN, SUSPENDIEN and DMADONEIEN bit to enable 
USB reset, suspend and DMA complete interrupts 

6. Write physical source address to HSUSBD_DMAADDR register 

7. Write transfer count to HSUSBD_DMACNT register 

8. Set SBD_DMACTL register DMAEN bit to trigger DMA 

9. Waiting for DMA complete interrupt occurred 

1) Set HSUSBD_BUSINTSTS register DMADONEIF bit to clear interrupt. 

2) Check whether last packet is less than maximum packet size. If so, set 
HSUSBD_EPxRSPCTL register SHORTTXEN bit to output the last packet 

 

 OUT Transmission 

USBD controller handles OUT transmission through DMA: 

1. Set HSUSBD_DMACTL register DMARD bit to 0 for DMA write. Fill endpoint number to 
HSUSBD_DMACTL register EPNUM bit. 

2. Check the transfer length. If transfer length is greater than DMA count, user needs to separate 
the transmission 

3. Set HSUSBD_BUSINTEN register RSTIEN, SUSPENDIEN and DMADONEIEN bit to enable 
USB reset, suspend and DMA complete interrupts 

4. Write physical target address to HSUSBD_DMAADDR register 

5. Write transfer count to HSUSBD_DMACNT register 

6. Set SBD_DMACTL register DMAEN bit to trigger DMA 

7. Waiting for DMA complete interrupt occurred 

1) Set HSUSBD_BUSINTSTS register DMADONEIF bit to clear interrupt 

2) Check whether received length is mass storage CBW or data length 

3) Set HSUSBD_EPxINTEN register RXPKIEN bit to enable receive packet interrupt 

8. Waiting for received data interrupt occurred. Clear HSUSBD_EPxINTEN register RXPKIEN bit 
to disable receive data 

  



 NUC980 

May 2, 2019  Page 177 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

20.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

HSUSBD Base Address: 

HSUSBD_BA = 0xB001_6000 

HSUSBD_GINTSTS HSUSBD_BA+0x000 R Global Interrupt Status Register 0x0000_0000 

HSUSBD_GINTEN HSUSBD_BA+0x008 R/W Global Interrupt Enable Register 0x0000_0001 

HSUSBD_BUSINTSTS HSUSBD_BA+0x010 R/W USB Bus Interrupt Status Register 0x0000_0000 

HSUSBD_BUSINTEN HSUSBD_BA+0x014 R/W USB Bus Interrupt Enable Register 0x0000_0040 

HSUSBD_OPER HSUSBD_BA+0x018 R/W USB Operational Register 0x0000_0002 

HSUSBD_FRAMECNT HSUSBD_BA+0x01C R USB Frame Count Register 0x0000_0000 

HSUSBD_FADDR HSUSBD_BA+0x020 R/W USB Function Address Register 0x0000_0000 

HSUSBD_TEST HSUSBD_BA+0x024 R/W USB Test Mode Register 0x0000_0000 

HSUSBD_CEPDAT HSUSBD_BA+0x028 R/W Control Endpoint Data Buffer 0x0000_0000 

HSUSBD_CEPCTL HSUSBD_BA+0x02C R/W Control Endpoint Control Register 0x0000_0000 

HSUSBD_CEPINTEN HSUSBD_BA+0x030 R/W Control Endpoint Interrupt Enable 0x0000_0000 

HSUSBD_CEPINTSTS HSUSBD_BA+0x034 R/W Control Endpoint Interrupt Status 0x0000_1800 

HSUSBD_CEPTXCNT HSUSBD_BA+0x038 R/W Control Endpoint In Transfer Data Count 0x0000_0000 

HSUSBD_CEPRXCNT HSUSBD_BA+0x03C R 
Control Endpoint Out Transfer Data 
Count 

0x0000_0000 

HSUSBD_CEPDATCNT HSUSBD_BA+0x040 R Control Endpoint Data Count 0x0000_0000 

HSUSBD_SETUP1_0 HSUSBD_BA+0x044 R Setup1 & Setup0 bytes 0x0000_0000 

HSUSBD_SETUP3_2 HSUSBD_BA+0x048 R Setup3 & Setup2 Bytes 0x0000_0000 

HSUSBD_SETUP5_4 HSUSBD_BA+0x04C R Setup5 & Setup4 Bytes 0x0000_0000 

HSUSBD_SETUP7_6 HSUSBD_BA+0x050 R Setup7 & Setup6 Bytes 0x0000_0000 

HSUSBD_CEPBUFSTART HSUSBD_BA+0x054 R/W 
Control Endpoint RAM Start Address 
Register 

0x0000_0000 

HSUSBD_CEPBUFEND HSUSBD_BA+0x058 R/W 
Control Endpoint RAM End Address 
Register 

0x0000_0000 

HSUSBD_DMACTL HSUSBD_BA+0x05C R/W DMA Control Status Register 0x0000_0000 

HSUSBD_DMACNT HSUSBD_BA+0x060 R/W DMA Count Register 0x0000_0000 

HSUSBD_EPADAT HSUSBD_BA+0x064 R/W Endpoint A Data Register 0x0000_0000 

HSUSBD_EPAINTSTS HSUSBD_BA+0x068 R/W Endpoint A Interrupt Status Register 0x0000_0003 

HSUSBD_EPAINTEN HSUSBD_BA+0x06C R/W Endpoint A Interrupt Enable Register 0x0000_0000 

HSUSBD_EPADATCNT HSUSBD_BA+0x070 R 
Endpoint A Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPARSPCTL HSUSBD_BA+0x074 R/W Endpoint A Response Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 178 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

HSUSBD_EPAMPS HSUSBD_BA+0x078 R/W 
Endpoint A Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPATXCNT HSUSBD_BA+0x07C R/W Endpoint A Transfer Count Register 0x0000_0000 

HSUSBD_EPACFG HSUSBD_BA+0x080 R/W Endpoint A Configuration Register 0x0000_0012 

HSUSBD_EPABUFSTART HSUSBD_BA+0x084 R/W Endpoint A RAM Start Address Register 0x0000_0000 

HSUSBD_EPABUFEND HSUSBD_BA+0x088 R/W Endpoint A RAM End Address Register 0x0000_0000 

HSUSBD_EPBDAT HSUSBD_BA+0x08C R/W Endpoint B Data Register 0x0000_0000 

HSUSBD_EPBINTSTS HSUSBD_BA+0x090 R/W Endpoint B Interrupt Status Register 0x0000_0003 

HSUSBD_EPBINTEN HSUSBD_BA+0x094 R/W Endpoint B Interrupt Enable Register 0x0000_0000 

HSUSBD_EPBDATCNT HSUSBD_BA+0x098 R 
Endpoint B Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPBRSPCTL HSUSBD_BA+0x09C R/W Endpoint B Response Control Register 0x0000_0000 

HSUSBD_EPBMPS HSUSBD_BA+0x0A0 R/W 
Endpoint B Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPBTXCNT HSUSBD_BA+0x0A4 R/W Endpoint B Transfer Count Register 0x0000_0000 

HSUSBD_EPBCFG HSUSBD_BA+0x0A8 R/W Endpoint B Configuration Register 0x0000_0022 

HSUSBD_EPBBUFSTART HSUSBD_BA+0x0AC R/W Endpoint B RAM Start Address Register 0x0000_0000 

HSUSBD_EPBBUFEND HSUSBD_BA+0x0B0 R/W Endpoint B RAM End Address Register 0x0000_0000 

HSUSBD_EPCDAT HSUSBD_BA+0x0B4 R/W Endpoint C Data Register 0x0000_0000 

HSUSBD_EPCINTSTS HSUSBD_BA+0x0B8 R/W Endpoint C Interrupt Status Register 0x0000_0003 

HSUSBD_EPCINTEN HSUSBD_BA+0x0BC R/W Endpoint C Interrupt Enable Register 0x0000_0000 

HSUSBD_EPCDATCNT HSUSBD_BA+0x0C0 R 
Endpoint C Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPCRSPCTL HSUSBD_BA+0x0C4 R/W Endpoint C Response Control Register 0x0000_0000 

HSUSBD_EPCMPS HSUSBD_BA+0x0C8 R/W 
Endpoint C Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPCTXCNT HSUSBD_BA+0x0CC R/W Endpoint C Transfer Count Register 0x0000_0000 

HSUSBD_EPCCFG HSUSBD_BA+0x0D0 R/W Endpoint C Configuration Register 0x0000_0032 

HSUSBD_EPCBUFSTART HSUSBD_BA+0x0D4 R/W Endpoint C RAM Start Address Register 0x0000_0000 

HSUSBD_EPCBUFEND HSUSBD_BA+0x0D8 R/W Endpoint C RAM End Address Register 0x0000_0000 

HSUSBD_EPDDAT HSUSBD_BA+0x0DC R/W Endpoint D Data Register 0x0000_0000 

HSUSBD_EPDINTSTS HSUSBD_BA+0x0E0 R/W Endpoint D Interrupt Status Register 0x0000_0003 

HSUSBD_EPDINTEN HSUSBD_BA+0x0E4 R/W Endpoint D Interrupt Enable Register 0x0000_0000 

HSUSBD_EPDDATCNT HSUSBD_BA+0x0E8 R 
Endpoint D Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPDRSPCTL HSUSBD_BA+0x0EC R/W Endpoint D Response Control Register 0x0000_0000 

HSUSBD_EPDMPS HSUSBD_BA+0x0F0 R/W 
Endpoint D Maximum Packet Size 
Register 

0x0000_0000 



 NUC980 

May 2, 2019  Page 179 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

HSUSBD_EPDTXCNT HSUSBD_BA+0x0F4 R/W Endpoint D Transfer Count Register 0x0000_0000 

HSUSBD_EPDCFG HSUSBD_BA+0x0F8 R/W Endpoint D Configuration Register 0x0000_0042 

HSUSBD_EPDBUFSTART HSUSBD_BA+0x0FC R/W Endpoint D RAM Start Address Register 0x0000_0000 

HSUSBD_EPDBUFEND HSUSBD_BA+0x100 R/W Endpoint D RAM End Address Register 0x0000_0000 

HSUSBD_EPEDAT HSUSBD_BA+0x104 R/W Endpoint E Data Register 0x0000_0000 

HSUSBD_EPEINTSTS HSUSBD_BA+0x108 R/W Endpoint E Interrupt Status Register 0x0000_0003 

HSUSBD_EPEINTEN HSUSBD_BA+0x10C R/W Endpoint E Interrupt Enable Register 0x0000_0000 

HSUSBD_EPEDATCNT HSUSBD_BA+0x110 R 
Endpoint E Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPERSPCTL HSUSBD_BA+0x114 R/W Endpoint E Response Control Register 0x0000_0000 

HSUSBD_EPEMPS HSUSBD_BA+0x118 R/W 
Endpoint E Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPETXCNT HSUSBD_BA+0x11C R/W Endpoint E Transfer Count Register 0x0000_0000 

HSUSBD_EPECFG HSUSBD_BA+0x120 R/W Endpoint E Configuration Register 0x0000_0052 

HSUSBD_EPEBUFSTART HSUSBD_BA+0x124 R/W Endpoint E RAM Start Address Register 0x0000_0000 

HSUSBD_EPEBUFEND HSUSBD_BA+0x128 R/W Endpoint E RAM End Address Register 0x0000_0000 

HSUSBD_EPFDAT HSUSBD_BA+0x12C R/W Endpoint F Data Register 0x0000_0000 

HSUSBD_EPFINTSTS HSUSBD_BA+0x130 R/W Endpoint F Interrupt Status Register 0x0000_0003 

HSUSBD_EPFINTEN HSUSBD_BA+0x134 R/W Endpoint F Interrupt Enable Register 0x0000_0000 

HSUSBD_EPFDATCNT HSUSBD_BA+0x138 R 
Endpoint F Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPFRSPCTL HSUSBD_BA+0x13C R/W Endpoint F Response Control Register 0x0000_0000 

HSUSBD_EPFMPS HSUSBD_BA+0x140 R/W 
Endpoint F Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPFTXCNT HSUSBD_BA+0x144 R/W Endpoint F Transfer Count Register 0x0000_0000 

HSUSBD_EPFCFG HSUSBD_BA+0x148 R/W Endpoint F Configuration Register 0x0000_0062 

HSUSBD_EPFBUFSTART HSUSBD_BA+0x14C R/W Endpoint F RAM Start Address Register 0x0000_0000 

HSUSBD_EPFBUFEND HSUSBD_BA+0x150 R/W Endpoint F RAM End Address Register 0x0000_0000 

HSUSBD_EPGDAT HSUSBD_BA+0x154 R/W Endpoint G Data Register 0x0000_0000 

HSUSBD_EPGINTSTS HSUSBD_BA+0x158 R/W Endpoint G Interrupt Status Register 0x0000_0003 

HSUSBD_EPGINTEN HSUSBD_BA+0x15C R/W Endpoint G Interrupt Enable Register 0x0000_0000 

HSUSBD_EPGDATCNT HSUSBD_BA+0x160 R 
Endpoint G Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPGRSPCTL HSUSBD_BA+0x164 R/W Endpoint G Response Control Register 0x0000_0000 

HSUSBD_EPGMPS HSUSBD_BA+0x168 R/W 
Endpoint G Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPGTXCNT HSUSBD_BA+0x16C R/W Endpoint G Transfer Count Register 0x0000_0000 

HSUSBD_EPGCFG HSUSBD_BA+0x170 R/W Endpoint G Configuration Register 0x0000_0072 



 NUC980 

May 2, 2019  Page 180 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

HSUSBD_EPGBUFSTART HSUSBD_BA+0x174 R/W Endpoint G RAM Start Address Register 0x0000_0000 

HSUSBD_EPGBUFEND HSUSBD_BA+0x178 R/W Endpoint G RAM End Address Register 0x0000_0000 

HSUSBD_EPHDAT HSUSBD_BA+0x17C R/W Endpoint H Data Register 0x0000_0000 

HSUSBD_EPHINTSTS HSUSBD_BA+0x180 R/W Endpoint H Interrupt Status Register 0x0000_0003 

HSUSBD_EPHINTEN HSUSBD_BA+0x184 R/W Endpoint H Interrupt Enable Register 0x0000_0000 

HSUSBD_EPHDATCNT HSUSBD_BA+0x188 R 
Endpoint H Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPHRSPCTL HSUSBD_BA+0x18C R/W Endpoint H Response Control Register 0x0000_0000 

HSUSBD_EPHMPS HSUSBD_BA+0x190 R/W 
Endpoint H Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPHTXCNT HSUSBD_BA+0x194 R/W Endpoint H Transfer Count Register 0x0000_0000 

HSUSBD_EPHCFG HSUSBD_BA+0x198 R/W Endpoint H Configuration Register 0x0000_0082 

HSUSBD_EPHBUFSTART HSUSBD_BA+0x19C R/W Endpoint H RAM Start Address Register 0x0000_0000 

HSUSBD_EPHBUFEND HSUSBD_BA+0x1A0 R/W Endpoint H RAM End Address Register 0x0000_0000 

HSUSBD_EPIDAT HSUSBD_BA+0x1A4 R/W Endpoint I Data Register 0x0000_0000 

HSUSBD_EPIINTSTS HSUSBD_BA+0x1A8 R/W Endpoint I Interrupt Status Register 0x0000_0003 

HSUSBD_EPIINTEN HSUSBD_BA+0x1AC R/W Endpoint I Interrupt Enable Register 0x0000_0000 

HSUSBD_EPIDATCNT HSUSBD_BA+0x1B0 R 
Endpoint I Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPIRSPCTL HSUSBD_BA+0x1B4 R/W Endpoint I Response Control Register 0x0000_0000 

HSUSBD_EPIMPS HSUSBD_BA+0x1B8 R/W 
Endpoint I Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPITXCNT HSUSBD_BA+0x1BC R/W Endpoint I Transfer Count Register 0x0000_0000 

HSUSBD_EPICFG HSUSBD_BA+0x1C0 R/W Endpoint I Configuration Register 0x0000_0092 

HSUSBD_EPIBUFSTART HSUSBD_BA+0x1C4 R/W Endpoint I RAM Start Address Register 0x0000_0000 

HSUSBD_EPIBUFEND HSUSBD_BA+0x1C8 R/W Endpoint I RAM End Address Register 0x0000_0000 

HSUSBD_EPJDAT HSUSBD_BA+0x1CC R/W Endpoint J Data Register 0x0000_0000 

HSUSBD_EPJINTSTS HSUSBD_BA+0x1D0 R/W Endpoint J Interrupt Status Register 0x0000_0003 

HSUSBD_EPJINTEN HSUSBD_BA+0x1D4 R/W Endpoint J Interrupt Enable Register 0x0000_0000 

HSUSBD_EPJDATCNT HSUSBD_BA+0x1D8 R 
Endpoint J Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPJRSPCTL HSUSBD_BA+0x1DC R/W Endpoint J Response Control Register 0x0000_0000 

HSUSBD_EPJMPS HSUSBD_BA+0x1E0 R/W 
Endpoint J Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPJTXCNT HSUSBD_BA+0x1E4 R/W Endpoint J Transfer Count Register 0x0000_0000 

HSUSBD_EPJCFG HSUSBD_BA+0x1E8 R/W Endpoint J Configuration Register 0x0000_00A2 

HSUSBD_EPJBUFSTART HSUSBD_BA+0x1EC R/W Endpoint J RAM Start Address Register 0x0000_0000 

HSUSBD_EPJBUFEND HSUSBD_BA+0x1F0 R/W Endpoint J RAM End Address Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 181 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

HSUSBD_EPKDAT HSUSBD_BA+0x1F4 R/W Endpoint K Data Register 0x0000_0000 

HSUSBD_EPKINTSTS HSUSBD_BA+0x1F8 R/W Endpoint K Interrupt Status Register 0x0000_0003 

HSUSBD_EPKINTEN HSUSBD_BA+0x1FC R/W Endpoint K Interrupt Enable Register 0x0000_0000 

HSUSBD_EPKDATCNT HSUSBD_BA+0x200 R 
Endpoint K Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPKRSPCTL HSUSBD_BA+0x204 R/W Endpoint K Response Control Register 0x0000_0000 

HSUSBD_EPKMPS HSUSBD_BA+0x208 R/W 
Endpoint K Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPKTXCNT HSUSBD_BA+0x20C R/W Endpoint K Transfer Count Register 0x0000_0000 

HSUSBD_EPKCFG HSUSBD_BA+0x210 R/W Endpoint K Configuration Register 0x0000_00B2 

HSUSBD_EPKBUFSTART HSUSBD_BA+0x214 R/W Endpoint K RAM Start Address Register 0x0000_0000 

HSUSBD_EPKBUFEND HSUSBD_BA+0x218 R/W Endpoint K RAM End Address Register 0x0000_0000 

HSUSBD_EPLDAT HSUSBD_BA+0x21C R/W Endpoint L Data Register 0x0000_0000 

HSUSBD_EPLINTSTS HSUSBD_BA+0x220 R/W Endpoint L Interrupt Status Register 0x0000_0003 

HSUSBD_EPLINTEN HSUSBD_BA+0x224 R/W Endpoint L Interrupt Enable Register 0x0000_0000 

HSUSBD_EPLDATCNT HSUSBD_BA+0x228 R 
Endpoint L Data Available Count 
Register 

0x0000_0000 

HSUSBD_EPLRSPCTL HSUSBD_BA+0x22C R/W Endpoint L Response Control Register 0x0000_0000 

HSUSBD_EPLMPS HSUSBD_BA+0x230 R/W 
Endpoint L Maximum Packet Size 
Register 

0x0000_0000 

HSUSBD_EPLTXCNT HSUSBD_BA+0x234 R/W Endpoint L Transfer Count Register 0x0000_0000 

HSUSBD_EPLCFG HSUSBD_BA+0x238 R/W Endpoint L Configuration Register 0x0000_00C2 

HSUSBD_EPLBUFSTART HSUSBD_BA+0x23C R/W Endpoint L RAM Start Address Register 0x0000_0000 

HSUSBD_EPLBUFEND HSUSBD_BA+0x240 R/W Endpoint L RAM End Address Register 0x0000_0000 

HSUSBD_DMAADDR HSUSBD_BA+0x700 R/W AHB DMA Address Register 0x0000_0000 

HSUSBD_PHYCTL HSUSBD_BA+0x704 R/W USB PHY Control Register 0x0000_0420 



 NUC980 

May 2, 2019  Page 182 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

21 USB HOST CONTROLLER 

21.1 Overview 

The Universal Serial Bus (USB) is a fast, bi-directional, isochronous, low-cost, dynamically attachable 
serial interface standard intended for modem, scanners, PDAs, keyboards, mice, and digital imaging 
devices. The USB is a 4-wire serial cable bus that supports serial data exchange between a Host 
Controller and a network of peripheral devices. The attached peripherals share USB bandwidth 
through a host-scheduled, token-based protocol. Peripherals may be attached, configured, used, and 
detached, while the host and other peripherals continue operation (i.e. hot plug and unplug is 
supported). 

The design purpose of USB standard is to achieve a flexible, plug-and-play of the USB device 
connectivity network. In any USB connectivity network, there will only be an USB host controller, but 
can connect up to 127 USB devices and hubs.  

21.2 Features 

 Fully compliant with USB Revision 2.0 specification. 

 Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible. 

 Open Host Controller Interface (OHCI) Revision 1.0 compatible. 

 Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB 
devices. 

 Supports Control, Bulk, Interrupt, Isochronous and Split transfers. 

 Integrated a port routing logic to route full/low speed device to OHCI controller. 

 Support up to 6 USB Lite full-speed ports. 

 Built-in DMA for real-time data transfer. 

  



 NUC980 

May 2, 2019  Page 183 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

21.3 Block Diagram 

EHCI Host Controller
USB 1.1 Host Controller

(OHCI)

AHB-2 (System Memory Access)

USB Bus

Port Routing Logic

AHB1 (Register Access)

USB 2.0 Host controller

Port 1 Port 2 Port 1 Port 2

Port 1 Port 2

 

Figure 21.3-1 USB Host Controller Block Diagram 

 

 Basic Configuration 

Set the USBH(CLK_HCLKEN[18]) bit to enable USB host clock. 

USB 1.1 Host 48 MHz clock source is come from USB 2.0 USB PHY 480 MHz divided by 10. Driver 
programs USB_S(CLK_DIVCTL2[4:3]) select USB 1.1 engine clock source come from USB 2.0 PHY 0 
or PHY1.  

Set SUSPEND(USBPCR0[8]) bit to enable USB PHY0 and set SUSPEND(USBPCR1[8]) bit to enable 
USB PHY1. User has to check if CLKVALID(USBPCR0[11]) is high before starting to use USB host 
controller. 

 USB Host Port 0 

USB port 0 is a dual-role port. It can be a USB device port or a USB host port. To work as host or 
device role is depend on USB ID pin. If ID pin is low, USB port 0 works as a USB device port. If ID pin 
is high, USB port 0 works as a USB host port. USBID[SYS_PWRON[16]] indicates the current role of 
USB port 0. 

Driver can force to change the USB port0 host/device role. First, set USRHDSEN(SYS_MISCFCR[11]) 
bit, thus USBID[SYS_PWRON[16]] becomes writable. Then, driver can write 1 to  
USBID[SYS_PWRON[16]] to force USB port 0 be a host port, or write 0 to USBID[SYS_PWRON[16]] 
to force USB port 0 be a device port. 

 

 

 EHCI Controller 

The EHCI is interfaced with the system through AHB interface. Whenever the CPU wants to initiate a 
register read or register write, it uses the AHB slave I/F signals and performs the necessary operation 



 NUC980 

May 2, 2019  Page 184 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

(register read writes). The CPU acts as a bus master, having initiated this transfer. At that time, EHCI 
acts as a target and responds to the transfer initiated by the system software. For example, if the CPU 
wants to write into one of the memory mapped registers of EHCI, it says the address and value to be 
written into that addressed register. EHCI targets the register by using that address and fills the 
register with the value specified by the software. If it is a register read, EHCI gets the value from the 
addressed register and puts it on the system bus. 

Likewise, when the EHCI wants to perform a data transfer, it acts as a master and initiates a data 
transfer. At that time, the system memory acts as a bus target. EHCI, as a master can perform two 
types of data transfers, from EHCI to the system memory and from system memory to the EHCI. 
When the EHCI wants the data to be moved from the downstream USB2.0 device to the system 
memory, it initiates a memory write transfer by accessing the memory interfacing signals. EHCI writes 
the control word (write), data and data count to be moved to the system memory. The memory 
controller accepts the data and moves it to the memory. If the data has to be moved from memory to 
the downstream device, the EHCI issue a read transfer to system bus. The memory controller gives 
data through the memory interfacing signals. EHCI accepts the data and moves them to the 
downstream device. 

 OHCI Controller 

 AHB Interface 

The OpenHCI Host Controller is connected to the system by the AHB bus. The design requires both 
master and slave bus operations. As a master, the Host Controller is responsible for running cycles on 
the AHB bus to access EDs and TDs as well as transferring data between memory and the local data 
buffer. As a slave, the Host Controller monitors the cycles on the AHB bus and determines when to 
respond to these cycles. Configuration and non-real-time control access to the Host Controller 
operational registers are through the AHB bus slave interface. 

 AHB Master 

The master issues the address and data onto the bus when granted. 

 AHB Slave 

The configuration of the Host Controller is through the slave interface. 

 List Processor 

The List Processor manages the data structures from the Host Controller Driver and coordinates all 
activity within the Host Controller. 

 Frame Management 

Frame Management is responsible for managing the frame specific tasks required by the USB 
specification and the OpenHCI specification. These tasks are: 

 Management of the OpenHCI frame specific Operational Registers. 

 Operation of the Largest Data Packet Counter. 

 Performing frame qualifications on USB Transaction requests to the SIE. 

 Generate SOF token requests to the SIE. 

 Interrupt Processing 

Interrupts are the communication method for HC-initiated communication with the Host Controller 
Driver. There are several events that may trigger an interrupt from the Host Controller. Each specific 
event sets a specific bit in the HcInterruptStatus register.  

 Host Controller Bus Master 

The Host Controller Bus Master is the central block in the data path. The Host Controller Bus Master 
coordinates all access to the AHB Interface. There are two sources of bus mastering within Host 



 NUC980 

May 2, 2019  Page 185 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Controller: the List Processor and the Data Buffer Engine.  

 Data Buffer 

The Data Buffer serves as the data interface between the Bus Master and the SIE. It is a combination 
of a 64-byte latched based bi-directional asynchronous FIFO and a single Dword AHB Holding 
Register. 

 USB Interface 

The USB interface includes the integrated Root Hub with two external ports, Port 1 and Port 2 as well 
as the Serial Interface Engine (SIE) and USB clock generator. The interface combines responsibility 
for executing bus transactions requested by the HC as well as the hub and port management specified 
by USB.  

 Series Interface Engine (SIE) 

The SIE is responsible for managing all transactions to the USB. It controls the bus protocol, packet 
generation/extraction, data parallel-to-serial conversion, CRC coding, bit stuffing, and NRZI encoding. 
All transactions on the USB are requested from the List Processor and Frame Manager.  

 Root Hub 

The Root Hub is a collection of ports that are individually controlled and a hub that maintains 
control/status over functions common to all ports.  

 USB Lite 

NUC980 supports 6 USB Lite full-speed ports.Several GPIO pins can be slected for D+/D- pins of USB 
Lite ports. USB Lite 0 ~ 5 are mapped to OHCI (USB 1.1)  port 2 ~ 7. OHCI port 0 and 1 are the root 
hub ports. 

 

 

  



 NUC980 

May 2, 2019  Page 186 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

21.4 Functional Description 

 Initialization 

To initialize USB Host Controller, the following operations must be performed correctly: 

 Set USBH(CLK_HCLKEN [18]) bit as 1 to enable USB Host Controller clock source.  

 Write 0x160 and 0x520 to USBPCR0 and USBPCR1 respectively to enable USB PHY0 
and PHY1.  

 Configure PE.11 multifunction pin for USBH0_VBUSVLS and PE.12 for USBH_PWREN 
respectively. NUC980 UBS Host Controller uses these two pins to control external power 
switch IC, which provides power to USB port 0 and port1.  

 Initialize OHCI Host Controller, which services USB 1.1 full-speed and low-speed 
devices. 

 If USBH Lite ports were used, configure the corresponding multifunction pins. 

 Initialize EHCI Host Controller, which services USB 2.0 high-speed devices.  

 Root Hub Port Routing Logic 

NUC980 series MCU equips EHCI (USB2.0) and OHCI (USB1.1) Host controller. Both Host 
Controllers share the two USB ports of root hub. If EHCI is enabled and in the activated state (UCFGR 
[0] is set to 1), it will be the default owner EHCI USB port. If EHCI is not enabled, OHCI will be only 
owner of root hub ports until EHCI is enabled. The ownership of root hub ports can be assigned to 
EHCI or OHCI individually. 

EHCI Host Controller is designed for USB 2.0 devices. If an USB 2.0 device was plugged into the USB 
port, EHCI Host Controller will perform the standard USB device enumeration procedure to reset and 
enable the device. If success, user can perform USB data transfers on this device. Because EHCI has 
ownership of that USB port, there’s any no port related status changes to OHCI. OHCI is totally 
unaware of the connection of USB 2.0 device. 

However, if an USB 1.1 full-speed or low-speed device is plugged into a USB port, EHCI will fail to 
reset and enable it. In this case, EHCI driver or hub driver should change the ownership of that port to 
OHCI Host Controller. Set PO(UPSCRx [13]) bit as 1 can transfer port ownership to companion OHCI 
Host Controller. In the following, OHCI root hub ports will receive the status change of device 
connected. And it’s OHCI Host Controller’s turn to reset and enable the USB device. Once success, 
user can perform full/low-speed transfer on that USB device.  

When the USB device is connected, OHCI driver cannot transfer port ownership to the EHCI until 
device disconnected. Once the USB device is disconnected, the ownership of the port is automatically 
returned to the EHCI, and PO(UPSCRx [13]) bit will be cleared by root hub. 

 OHCI 

The NUC980 OHCI host controller is fully compliant with the Open Host Controller (OHCI), version 1.0 
standard. OHCI drivers running on other platforms, can be easily ported to NUC980. 

 Data Structure 

In addition to direct access to the OHCI registers, system software interworks with OCHI controller via 
the following structured memory blocks: 

 Endpoint Descriptor List 

 Transfer Descriptor List 

 Host Controller Communication Area(HCCA) 



 NUC980 

May 2, 2019  Page 187 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

These data structures are defined by OHCI standard. System software allocates memory blocks to 
create these data structures. OHCI Host Controller has the ability to access these memory blocks by 
way of DMA transfer. All endpoint descriptors, transfer descriptors, HCCA and transmission buffers 
must be set to non-cacheable area. Endpoint descriptors and transfer descriptors must be aligned with 
the 32-byte address boundary. Host controller communication area must be aligned with 256-byte 
address boundary. 

 Endpoint Descriptor 

The OpenHCI Host Controller fulfills USB transfers by classifying Endpoints into four types of Endpoint 
Descriptor lists. The Control ED list is pointed by HcControlHeadED register, the Bulk ED list is 
pointed by HcBulkHeadED register, the Interrupt ED lists are pointed by InterruptTable of HCCA, and 
the Isochronous ED list is linked behind the last 1m interval Interrupt ED. HCD must create and 
maintain an ED for each endpoint of a USB device. 

For all transfer types, they have the same Endpoint Descriptor format. The common format is listed 
below: 

 

 3    2          1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 

 1    6          6 5 4 3 2 1 0  7 6 5 4 3 2 1 0 

Dword 0 — MPS F K S D EN FA 

Dword 1 TD Queue Tail Pointer (TailP) — 

Dword 2 TD Queue Head Pointer (HeadP) 0 C H 

Dword 3 Next Endpoint Descriptor (NextED) — 

Table 21.4-1 End Point Descriptor Format  

 

The Control ED list is created by Host Controller Driver (HCD), which should add any new EDs to the 
end of the Control ED list. HCD must write the physical address of the first ED of Control ED list to 
HcControlHeadED register. Thus, the HC can find the Control ED list and process all Control EDs. 
Similarly, all Bulk EDs are placed in the Bulk ED list, which must be pointed by the HcBulkHeadED 
register. And it's the responsibility of HCD to maintain Bulk ED list and link HcBulkHeadED. 

The Interrupt ED lists are not directly pointed by any Host Controller operation registers, instead, they 
are pointed by the InterruptTable of HCCA (Host Controller Communication Area), which is a memory 
area created by HCD. In the HCCA, there are 32 entries InterruptTable with each entry points to an 
Interrupt ED list. The structure of Interrupt ED lists will be explained in the HCCA section. 

The end of each Interrupt ED list must be linked to the identical 1ms-polling interval Interrupt ED list, 
which is also a part of each Interrupt ED list. You may have no any 1ms-polling interval Interrupt EDs 
in some of the real scenes. If it was the case, then you will have a placeholder on the node a 1ms 
interval Interrupt ED should be inserted. It is also true for 2m, 4m, 8m, 16ms, and 32ms polling interval 
Interrupt ED lists. In fact, an Interrupt ED list is composed of these various polling interval Interrupt ED 
lists. 

The Isochronous ED list must be linked to the end of the 1ms-polling interval Interrupt ED list, that is, 
the end of any one Interrupt ED list. Host Controller Driver must maintain the Interrupt ED lists and 
Isochronous ED list, including the maintenance of HCCA and InterruptTable. The HCCA is pointed by 
HcHCCA register. Of course, HCD is responsible for creating HCCA and writing the physical address 
of HCCA to HcHCCA 

 Transfer Descriptor 

ED is used to describe the characteristics of a specific endpoint. ED itself does not make HC to start 
any data transfer on USB bus. OpenHCI employs Transfer Descriptors (TDs) to describe the details of 
an USB data transfer. A Transfer Descriptor (TD) is a system memory data structure that is used by 
the Host Controller to define a buffer of data that will be moved to or from an endpoint.  



 NUC980 

May 2, 2019  Page 188 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Transfer Descriptors are linked to queues attached to EDs. The ED provides the endpoint address 
to/from where the TD data is to be transferred. Host Controller Driver adds TDs to the queue and Host 

Controller removes TDs from the queue. Once the transfer of a TD was completed, Host Controller 
removed it from TD queue to the Done Queue.  

There are two TD types in OpenHCI, General TD and Isochronous TD. The TD formats are listed 
below: 

General Transfer Descriptor 

 3  2 2 2 2 2 2  2 2 1 1           0  0 

 1  8 7 6 5 4 3  1 0 9 8           3  0 

Dword 0 CC EC T DI DP R — 

Dword 1 Current Buffer Pointer (CBP) 

Dword 2 Next TD (NextTD) 0 

Dword 3 Buffer end (BE) 

Table 21.4-2 General Transfer Descriptor Format 

 Isochronous Transfer Descriptor 

 3  2 2 2  2 2  2 2  1 1   1 1  0 0   0 

 1  8 7 6  4 3  1 0  6 5   2 1  5 4   0 

Dword 0 CC – F

C 

D

I 

— SF 

Dword 1 Buffer Page 0 (BP0) — 

Dword 2 Next TD 0 

Dword 3 Buffer End (BE) 

Dword 4 Offset1/PSW1 Offset0/PSW0 

Dword 5 Offset3/PSW3 Offset2/PSW2 

Dword 6 Offset5/PSW5 Offset4/PSW4 

Dword 7 Offset7/PSW7 Offset6/PSW6 

Table 21.4-3 Isochronous Transfer Descriptor Format 

 Host Controller Communication Area 

The Host Controller Communications Area (HCCA) is a 256-byte structure of system memory, which is 
used by HCD to communicate with HC. HCCA must be aligned to 256 bytes address boundary. This 
memory block must be set to non-cacheable memory region, because HC accesses this memory 
block by DMA transfer. HCD must claim the physical address of HCCA by writing the physical address 
to HcHCCA register to notify HC the address of HCCA. 

 

Offset 

Size 

(bytes) 

 

Name 

 

Description 

0 128  HccaInterrruptTable These 32 Dwords are pointers to interrupt EDs. 

 0x80 2 HccaFrameNumber Contains the current frame number. This value 
is updated by the HC before it begins 
processing the periodic lists for the frame. 

0x82 2 HccaPad1 When the HC updates HccaFrameNumber, it 
sets this word to 0. 



 NUC980 

May 2, 2019  Page 189 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 0x84 4 HccaDoneHead 

 

When the HC reaches the end of a frame and 
its deferred interrupt register is 0, it writes the 
current value of its HcDoneHead to this 
location and generates an interrupt if interrupts 
are enabled. This location is not written by the 
HC again until software clears the WD bit in 
the HcInterruptStatus register. 

The LSb of this entry is set to 1 to indicate 
whether an unmasked HcInterruptStatus was 
set when HccaDoneHead was written. 

 0x88 116 reserved Reserved for use by Host Controller. 

Table 21.4-4 HCCA Structure 

 OHCI Initialization 

The initialization of Host Controller may contain the following steps: 

1. Disable Host Controller interrupts by writing 1 to MIE(HcIntDis[31]). 

2. Issue a software reset command by writing 1 to HCR(HcComSts[0]) and waiting for 10ms until 
the HCR be cleared as 0 by Host Controller. 

3. Allocate and create all necessary list structures and memory blocks, including HCC 
 A, and initialize all driver-maintained lists, including InterruptTable of HCCA (Note that 
HCCA must be aligned with 256-bytes address boundary, while EDs and TDs must be aligned 
with 32-bytes address boundary).  

4. Clear HcCtrHED and HcBlkHED register. 

5. Write the physical address of HCCA memory block to HcHCCA register. 

6. Write frame interval value (11,999 ± 6) to HcFmIntv register, and write 90% of this frame 
interval value (recommended) to HcPerSt register. 

7. Write 0x628 to HcLSTH register (0x628 is also the reset default value of HcLSTH register). 

8. Write 1 to BLE(HcControl[5]), CLE(HcControl[4]), IE(HcControl[3]), PLE(HcControl[2]) to 
enable Bulk, Control, Interrupt, and Isochronous transfers. 

9. Write 10b to HCFS(HcControl[7:6]) to make Host Controller enter operational state. 

10. Enable desired interrupts by writing corresponding bits to HcIntEn register and clear interrupt 
status of these interrupts by writing corresponding bits to HcIntSts register. 

11. Turn on the Root Hub port power by writing 1 to LPSC(HcRhSts[16])  (Note that NUC980 
Series MCU USB Root Hub uses global power switching mode) 

12. Enable AIC (NUC980 Advanced Interrupt Controller) OHCI interrupt. The IRQ number of OHCI 
is 24. 

 Interrupt Processing 

NUC980 Series MCU OHCI Host Controller may raise the following interrupts: 

  Scheduling Overrun 

  Write Back Done Head 

  Start of Frame 

  Resume Detected 

  Unrecoverable Error 

  Frame Number Overflow 



 NUC980 

May 2, 2019  Page 190 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

  Root Hub Status Change 

  Ownership Change 

 Scheduling Overrun Interrupt 

This interrupt is set when the USB schedule for the current frame overruns. The presence of this 
interrupt means that HCD has scheduled too many transfers. HCD may temporarily stop one or more 
endpoints to reduce bandwidth. 

 Write Back Done Head Interrupt 

This interrupt is set after Host Controller has written HcDoneH to HccaDoneHead. On this interrupt, 
HCD can obtain the TD done queue by reading HccaDoneHead. HCD may first reverse the done 
queue by traveling the done queue, because the TDs were retired in stack order. Then HCD can start 
processing on each TD.  

 Start of Frame Interrupt 

This interrupt is set on each start of a frame. Generally, HCD will not enable this interrupt. This 
interrupt is generally used to identify the starting of a next frame. For example, if you are going to 
remove a TD, you must ensure that the endpoint is not currently processed by Host Controller. To 
accomplish this, HCD can temporarily set the sKip bit of its ED and enable Start of Frame interrupt. In 
the next coming Start of Frame interrupt, HCD can ensure that the endpoint is not currently processed 
by Host Controller, and it can remove the TD. 

 Resumed Detected Interrupt 

This interrupt is set when Host Controller detects that a device on the USB bus is asserting a resume 
signal. If Host Controller is in USBSUSPEND state, the resume signal will make Host Controller 
automatically enter USBRESUME state.  

 Unrecoverable Error Interrupt 

The Host Controller will raise this interrupt when it detects a system error not related to USB or an 
error that cannot be reported in any other way. HCD may try to reset Host Controller in this case. 

 Frame Number Overflow Interrupt 

The Host Controller will raise this interrupt when the MSB bit of FN(HcFNum[15:0]) toggles value from 
0 to 1 or 1 to 0, and after HcFNum register has been updated. Because the Host Controller has only 
16-bits frame counter, the HCD may want to maintain a wider range frame counter. If the HCD want to 
maintain a 32-bits frame counter, it can increase the upper 16-bits value by each two Frame Number 
Overflow interrupt. 

 Root Hub Status Change Interrupt 

Once OCIC(HcRhsts[17]), CSC(HcRhPtrx[16]), PESC(HcRhPtrx[17]), or PSSC(HcRhPtrx[20]) is set, 
the Host Controller would raise this interrupt. 

 Ownership Change Interrupt 

Host Controller would raise this interrupt when HCD write 1 to OCR(HcComSts[3]).  



 NUC980 

May 2, 2019  Page 191 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

 Done Queue Processing 

The Done Queue is built by the Host Controller and referred to by the HcDoneH register. No matter 
successful or failed, the retired Transfer Descriptors must be put into the Done Queue by Host 
Controller. When Host Controller reaches the end of a frame (1ms) and its internal deferred interrupt 
register is 0, it writes the location of Done Queue to HccaDoneHead and raises a Write Back Done 
Head interrupt. HCD can take the Done Queue by servicing the Write Back Done Head interrupt. 

 Reverse Done Queue 

Host Controller queues TDs into the Done Queue by first-in-last-out order. The latest queued TD is 
linked at the head of the Done Queue, while the earliest queued TD is linked at the end of the Done 
Queue. HCD must reverse the Done Queue before it can start to process the retired TDs. 

 Processing Done Queue 

Once TDs in Done Queue are reversed into their original order, HCD can start to process these TDs 
one by one. For each TD, HCD checks whether the TD was completed with any errors.  

 Root Hub 

The Root Hub is integrated into Host Controller and the control of Root Hub is done by accessing 
register files. NUC980 OHCI Host Controller has provided several Root Hub related registers. The 
HcRhDeA and HcRhDeB registers are informative registers, which are used to describe the 
characteristics and capabilities of Root Hub. The HcRhSts register presents the current status and 
reflects the change of status of Root Hub. The HcRhPrt[1:8] register presents the current status and 
reflects the change of status of a Root Hub port. NUC980 Series MCU OHCI Root Hub has 8 hub 
ports, the HcRhPrt[1] ~ HcRhPrt[8] are respectively dedicated to port 1 ~ 8. 

 HcRhDeA and HcRhDeB 

HcRhDeA and HcRhDeB registers are informative registers, which are used to describe the 
characteristics and capabilities of Root Hub. The characteristics and capabilities of NUC980 OHCI 
Root Hub are listed in the followings: 

 8 downstream ports 

 Ports are power switched 

 Power switching mode is global power switch 

 Is not a compound device 

 Over-current status is reported collectively for all downstream ports 

 Power-on-to-power-good-time is 2ms 

 Devices attached to any ports are removable 

 HcRhsts 

The HcRhSts register is used to control and monitor the Root Hub status. The Root Hub can be 
controlled by the following actions: 

 ClearGlobalPower - write 1 to LPS(HcRhSts[0]). 

 SetRemoteWakeupEnable - write 1 to LPS(HcRhSts[15]). 

 SetGlobalPower - write 1 to LPSC(HcRhSts[16]). 



 NUC980 

May 2, 2019  Page 192 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 ClearRemoteWakeupEnable - write 1 to CRWE(HcRhSts[31]). 

 

In addition, HcRhSts register also indicates the following status: 

 OCI(HcRhSts[0]) indicates overcurrent condition. 

 DRWE(HcRhSts[15]) indicates the remote wakeup status. If this bit is 1, Connect Status 
Change is determined as a remote wakeup event 

 OCIC(HcRhSts[15]) - This bit was set when the OverCurrentIndicator bit changed 

HcRhPrt[1] and HcRhPrt[2] 

HcRhPrt[1] and HcRhPrt[2] registers are used to control and monitor the status Root Hub ports. 

HcRhPrt[1] is used to indicate port 1 status and HcRhPrt[2] for port 2 respectively. The lower word of 
HcRhPrt is used to reflect the port status, whereas the upper word is used to reflect the changing of 
lower word status bits. Some status bits are implemented with special write behavior. You can do the 
following actions to control the Root Hub port: 

 ClearPortEnable - write 1 to CCS(HcRhPrtx[0]). 

 SetPortEnable - write 1 to PES(HcRhPrtx[1]). 

 SetPortSuspend - write 1 to PES(HcRhPrtx[2]). 

 ClearPortSuspend - write 1 to PES(HcRhPrtx[3]). 

 SetPortReset - write 1 to PRS(HcRhPrtx[4]). 

You can get the current status of the Root Hub port by reading the following bits: 

 CCS(HcRhPrtx[0]) indicates the current connect status of the Root Hub port. 

 PES(HcRhPrtx[1]) indicates whether the port is enabled. 

 PSS(HcRhPrtx[2]) indicates the port is suspended. 

 PRS(HcRhPrtx[4]) indicates the Root Hub is asserting reset signal on this port. 

 PPS(HcRhPrtx[8]) indicates the port's power state. 

 LSDA(HcRhPrtx[9]) indicates a low-speed device is attached to this port. 

The following bits indicate the change of status bits. Write '1' to these bits will clear the events: 

 CSC(HcRhPrtx[16]) indicates change of CCS(HcRhPrtx[0]). 

 PESC(HcRhPrtx[17]) indicates change of PES(HcRhPrtx[1]). 

 PSSC(HcRhPrtx[18]) indicates change of PSS(HcRhPrtx[2]). 

 PRSC(HcRhPrtx[20]) indicates change of PRS(HcRhPrtx[4]). 

  



 NUC980 

May 2, 2019  Page 193 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 EHCI 

NUC980 EHCI host controller is fully compliant with the Enhanced Host Controller Interface (EHCI), 
version 1.0 standard. EHCI drivers running on other platforms, can be easily ported to NUC980. 

 Data Structure 

Except direct access to Host Controller by registers, Host Controller Driver must maintain the following 
memory blocks to communicate with Host Controller: 

 Isochronous (High-Speed) Transfer Descriptor (iTD) 

 Split Transaction Isochronous Transfer Descriptor (siTD) 

 Queue Element Transfer Descriptor (qTD) 

 Queue Head 

 Periodic Frame Span Traversal Node (FSTN) 

 Isochronous Transfer Descriptor (iTD) 

This structure is used only for high-speed isochronous endpoints. All other transfer types should use 
queue structures. Isochronous TDs must be aligned on a 32-byte boundary. Note that iTD must be 
located in non-cacheable memory. 

 

0x00 Next Link Pointer 0 Typ T 

0x04 Status Transaction 0 Length ioc PG Transaction 0 Offset 

0x08 Status Transaction 1 Length ioc PG Transaction 1 Offset 

0x0C Status Transaction 2 Length ioc PG Transaction 2 Offset 

0x10 Status Transaction 3 Length ioc PG Transaction 3 Offset 

0x14 Status Transaction 4 Length ioc PG Transaction 4 Offset 

0x18 Status Transaction 5 Length ioc PG Transaction 5 Offset 

0x1C Status Transaction 6 Length ioc PG Transaction 6 Offset 

0x20 Status Transaction 7 Length ioc PG Transaction 7 Offset 

0x24 Buffer Pointer (Page 0) EndPt R Device Address 

0x28 Buffer Pointer (Page 1) I/O Maximum Packet Size 

0x2C Buffer Pointer (Page 2) Reserved Mult 

0x30 Buffer Pointer (Page 3) Reserved 

0x34 Buffer Pointer (Page 4) Reserved 

0x38 Buffer Pointer (Page 5) Reserved 

0x3C Buffer Pointer (Page 6) Reserved 



 NUC980 

May 2, 2019  Page 194 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Table 21.4-5 Isochronous Transfer Descriptor Structure 

 Split Transaction Isochronous Transfer Descriptor (siTD) 

All Full-speed isochronous transfers through Transaction Translators are managed using the siTD 
data structure. This data structure satisfies the operational requirements for managing the split 
transaction protocol. Note that siTD must be located in non-cacheable memory. 

 

0x00 Next Link Pointer 0 Typ T 

0x04 I/O Port Number R Hub Addr R EndPt R Device Address 

0x08 Reserved uFrame C-mask uFrame S-mask 

0x0C          

0x10 Buffer Pointer (Page 0) Current Offset 

0x14 Buffer Pointer (Page 1) Reserved TP T-count 

0x18 Back Pointer 0 T 

Table 21.4-6 Split Transfer Isochronous Transfer Descriptor Structure 

 Queue Element Transfer Descriptor (qTD) 

This data structure is only used with a queue head. This data structure is used for one or more USB 
transactions. This data structure is used to transfer up to 20480 (5*4096) bytes. The structure contains 
two structure pointers used for queue advancement, a Dword of transfer state and a five-element 
array of data buffer pointers. This structure is 32 bytes (or one 32-byte cache line). This data structure 
must be physically contiguous. 

The buffer associated with this transfer must be virtually contiguous. The buffer may start on any byte 
boundary. A separate buffer pointer list element must be used for each physical page in the buffer, 
regardless of whether the buffer is physically contiguous. 

Note that qTD must be located in non-cacheable memory. 

0x00 Next qTD Pointer 0 T 

0x04 Alternate Next qTD Pointer 0 T 

0x08 dt Total Bytes To Transfer ioc C_Page Cerr PID 

Code 

Status 

0x0C Buffer Pointer (Page 0) Current Offset 

0x10 Buffer Pointer (Page 1) Reserved 

0x14 Buffer Pointer (Page 2) Reserved 

0x18 Buffer Pointer (Page 3) Reserved 

0x1C Buffer Pointer (Page 4) Reserved 

Table 21.4-7 Queue Element Transfer Descriptor Structure 



 NUC980 

May 2, 2019  Page 195 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 EHCI Initialization 

The initialization of EHCI Host Controller may contain the following steps : 

1. Write 1 to USBH(CLK_HCLKEN[18]) to enable USB Host clock. 

2. Enable PHY 0 by writing 0x160 to USBPCR0 register, and enable PHY 1 by writing 0x120 to 
USBPCR1 register. 

3. Force EHCI to halt state. It can be done by writing 0 to RUN(UCMDR[0]).  

4. Write 1 to HCRST(UCMDR[1]) to reset EHCI Host Controller. This bit will be cleared by Host 
Controller once reset process completed. 

5. Allocated non-cacheable memory for Periodic Frame List, which is an array of 32-bits pointers. 
Writing 0x01 (means end-of-list) to all entries of Periodic Frame List. And then writing the 
physical address of Periodic Frame List to UPFLBAR register. 

6. Enable EHCI interrupts by writing corresponding bits to UIENR register. 

7. Allocate main memory to create a dummy Queue Head for the asynchronous ring head. And 
writing physical address of the Queue Head to UCALAR register. 

8. Write 1 to UCFGR register. This will make the port routing logic to default-route all ports to 
EHCI controller. 

9. Write 1 to PP(UPSCR[0]) and PP(UPSCR[1]) to enable port power of root hub port 0 and 
port1. Once an USB device was connected, the port status register UPSCR0/1 can reflect it. 

 USB Commands 

EHCI driver issues commands to Host Controller by writing commands to UCMDR register. 

 Run/Stop 

Write 1 to RUN(UCMDR[0]) can make Host Controller enter operational state. Host Controller keeps 
operating as long as this bit is 1. Once RUN(UCMDR[0]) is cleared to 0, Host Controller completes the 
current and any actively pipelined transactions on the USB and then enter Halted state. 
HCHalted(USTSR[12]) indicates whether Host Controller has finished its transactions and has entered 
Halted state. EHCI driver must not write a one to this field unless Host Controller is in Halted state, it 
will yield unexpected results. 

 Host Controller Reset 

Write 1 to HCRST(UCMDR[1]) can reset EHCI Host Controller. The effects of this on Root Hub 
registers are similar to a Chip Hardware Reset. HCRST(UCMDR[1]) will be cleared as 0 by Host 
Controller when the reset process is completed. Writing 0 to HCRST(UCMDR[1]) cannot cancel the 
reset process. If the HCHalted(USTSR[12]) is 0, it’s not legal to write 1 to HCRST(UCMDR[1]). 
Attempting to reset an actively running host controller will result in unexpected errors. 

 Frame List Size 

FLSZ(UCMDR[3:2] indicates size of the frame list. The size the frame list controls which bits in the 
Frame Index Register should be used for the Frame List Current index. Values mean: 

00b   1024 elements (4096 bytes) Default value 

01b  512 elements (2048 bytes) 

10b  256 elements (1024 bytes) – for resource-constrained environments 

11b Reserved 



 NUC980 

May 2, 2019  Page 196 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Periodic Schedule Enable 

PSEN(UCMDR[4]) controls whether Host Controller skips processing the Periodic Schedule. Values 
mean: 

0b   Do not process the Periodic Schedule 

1b   Use the PERIODICLISTBASE register to access the Periodic Schedule. 

 Asynchronous Schedule Enable 

ASEN(UCMDR[5]) controls whether Host Controller skips processing the Asynchronous Schedule. 
Values mean: 

0b   Do not process the Asynchronous Schedule 

1b   Use the ASYNCLISTADDR register to access the Asynchronous Schedule. 

 Interrupt on Async Advance Doorbell 

IAAD(UCMDR[6]) is used as a doorbell by software to ask Host Controller to issue an interrupt the 
next time it advances asynchronous schedule. EHCI driver writes 1 IAAD(UCMDR[6]) to ring the 
doorbell. It’s illegal to write 1 to IAAD(UCMDR[6]) if asynchronous schedule is disabled.  

 Interrupt Threshold Control 

ITC(UCMDR[23:16]) determines the maximum rate at which Host Controller will issue interrupts. The 
only valid values are defined as the followings. Any other value is illegal. 

Value   Maximum Interrupt Interval 

00h   Reserved 

01h   1 micro-frame 

02h   2 micro-frames 

04h   4 micro-frames 

08h   8 micro-frames (default, equates to 1 ms) 

10h   16 micro-frames (2 ms) 

20h   32 micro-frames (4 ms) 

40h   64 micro-frames (8 ms) 

 Interrupt Processing 

USB Interrupt (USBINT) 

Host Controller sets USBINT(USTSR[0]) to 1 on the completion of a USB transaction, which implies 
the retirement of a Transfer Descriptor that had its IOC bit set. Host Controller also sets USBINT to 1 
when a short packet is detected (actual number of bytes received was less than the expected number 
of bytes). 

 USB Error Interrupt (UERRINT) 

Host Controller sets UERRINT(USTSR[1]) to 1 when completion of a USB transaction is caused by 
errors. If the TD on which the error interrupt occurred also had its IOC bit set, both 
UERRINT(USTSR[1]) and USBINT(USTSR[0]) will be set. 



 NUC980 

May 2, 2019  Page 197 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Port change Detect (PCD) 

Host Controller sets PCD(USTSR[2]) to 1 when any port has a change bit transition from a zero to a 
one or a Force Port Resume bit transition from a zero to a one. PCD(USTSR[2]) will also be set as a 
result of the Connect Status Change being set to a one after system software has elinquished 
ownership of a connected port by writing a one to a port's Port Owner bit. 

 Frame List Rollover (FLR) 

Host Controller sets FLR(USTSR[3]) to a one when the Frame List Index rolls over from its maximum 
value to zero. The exact value at which the rollover occurs depends on the frame list size. 

 Host System Error (HSERR) 

Host Controller sets HSERR(USTSR[4]) to 1 when a serious error occurs during Host Controller 
accessing system memory. When this error occurs, the Host Controller clears the Run(USTSR[0]) to 
prevent further execution of the scheduled TDs. 

 Interrupt on Async Advance (IAA) 

System software can ask Host Controller to issue an interrupt the next time the host controller 
advances the asynchronous schedule by writing 1 to IAA(USTSR[5]). This status bit indicates the 
assertion of that interrupt source. 

 HcHalted 

HcHalted(USTSR[12]) should be 0 if Run(USTSR[0]) is a one. Host Controller sets 
HcHalted(USTSR[12]) to 1 after it has stopped executing as a result of Run(USTSR[0]) being 

set to 0, either by software or by Host Controller. 

 Reclaimation (RCLA) 

RECLA(USTSR[13]) is a read-only status bit, which is used to detect an empty asynchronous 
schedule. 

 Periodic Schedule Status (PSS) 

PSS(USTSR[14]) indicates the current status of the Periodic Schedule. If PSS is 0, the Periodic 
Schedule is disabled. If PSS is 1, the Periodic Schedule is enabled. 

 Asynchronous Schedule Status 

ASS(USTSR[15]) indicates the current real status of Asynchronous Schedule. If ASS is 0, 
Asynchronous Schedule is disabled. If ASS is 1, Asynchronous Schedule is enabled. 

 Root Hub 

NUC980 Series MCU EHCI host controller implements two port registers, UPSCR0 and UPSCR1. 
NUC980 Series MCU EHCI root hub ports has port power control, software cannot change the state of 
the port until after it applies power to the port by writing 1 to PP(UPSCR[12]). Software must not 
attempt to change the state of the port until power is stable on the port. Host Controller will make port 
power stable within 20 milliseconds. The root hub ports control and status bits are listed as the 
following: 



 NUC980 

May 2, 2019  Page 198 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Current Connect Status (CCS) 

CCS(UPSCR[0]) indicates the current connect state of the port, and may not correspond directly to the 
event that caused the Connect Status Change bit (Bit 1) to be set. 

 Connect Status Change (CSC) 

CSC(UPSCR[1]) indicates a change has occurred in the port’s Current Connect Status. This status bit 
can be cleared by writing 1 to 1. 

 Port Enable/Disable (PE)) 

Ports can only be enabled by Host Controller as a part of the reset and enable. Software cannot 
enable a port by writing a one to PE(UPSCR[2]). Host Controller will only set this bit to a one when the 
reset sequence determines that the attached device is a high-speed device.  

Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host 
software. Note that the bit status does not change until the port state actually changes.  

When the port is disabled (0b) downstream propagation of data is blocked on this port, except for 
reset. 

 Port Enable/Disable Change (PEC) 

For the root hub, PEC(UPSCR[3]) is set to a one only when a port is disabled by Host Controller. 
Software can clear PEC(UPSCR[3]) by writing 1 to it. 

 Over-current Active (OCA) 

OCA(UPSCR[4]) indicates port over-current condition. Host Controller updates this it when port over-
current condition changed. OCA is a read-only bit to software. 

 Over-current Change (OCC) 

When there is a change to OCA(UPSCR[4]), Host Controller will set OCC(UPSCR[5]) as 1. 

Software can clear OCC(UPSCR[5]) by writing 1 to it. 

 Force Port Resume (FPR) 

Writing 1 to FPR(UPSCR[6]) makes Host Controller drive resume signal on that port. Host Controller 
sets this bit to a 1 if a J-to-K transition is detected if the port is in the Suspend state. When this bit 
transitions to 1 by J-to-K transition being detected, PCD(USTSR[2]) is also set to 1 by Host Controller. 
If software issues FPR, Host Controller will not set PCD(USTSR[2]). 

 Suspend 

Both PE(UPSCR[2]) and SUSPEND(UPSCR[7]) together define the port states as follows: 

Bits [Port Enabled, Suspend] Port State 

0X Disable 

10 Enable 



 NUC980 

May 2, 2019  Page 199 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

11 Suspend 

Table 21.4-8 Port Status Indication 

When in suspend state, downstream propagation of data is blocked on this port, except for port reset. 
The blocking occurs at the end of the current transaction, if a transaction was in progress when this bit 
was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status 
does not change until the port is suspended and that there may be a delay in suspending a port if 
there is a transaction currently in progress on the USB. 

 Port Reset (PRST) 

When software writes a one to PRST(UPSCR[8]), the bus reset sequence as defined in the USB 
Specification Revision 2.0 is started by Host Controller. Software writes 0 to PRST(UPSCR[8]) to 
terminate the bus reset sequence after 10ms later. Software must keep this bit as 1 long enough to 
ensure the reset sequence, as specified in the USB Specification Revision 2.0, completes. When 
software writes this bit to 1, it must also write 0 to the Port Enable bit. 

Note that when software writes 0 to PRST there may be a delay before the bit status changes to a 
zero. Host Controller will not clear PRST to 0 until the reset process is completed. If the port is in high-
speed mode after reset completed, Host Controller will automatically enable this port and set 
PE(UPSCR[2]) as 1. 

Before writing 1 to PRST, software must make sure HCHalted(USTSR[12]) be 0.  

 Port Power (PP) 

Software writes 1 to PP(UPSCR[12]) to turn on the port power, and writes 0 to turn off the port power. 
When an over-current condition is detected on a powered port, Host Controller will force to turn off the 
port power and clear PP(UPSCR[12]) as 0.  

 Port Owner (PO) 

PO(UPSCR[13]) indicates the port owner is OHCI or EHCI Host Controller. PO(UPSCR[13]) 
unconditionally goes to 0 when software writes 1 to UCFGR register. PO(UPSCR[13]) unconditionally 
goes to 1 whenever the UCFGR is cleared. 

System software uses PO(UPSCR[13]) to release ownership of the port to OHCI Host Controller (in 
the event that the attached device is not a high-speed device). Software writes 1 to PO when the 
attached device is not a high-speed device. 

  



 NUC980 

May 2, 2019  Page 200 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

21.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

USBH Base Address: 

USBH_BA = 0xB001_7000 

HSUSBH_BA = 0xB001_5000 

HcRevision USBH_BA+0x000 R Host Controller Revision Register 0x0000_0110 

HcControl USBH_BA+0x004 R/W Host Controller Control Register 0x0000_0000 

HcCommandStatus USBH_BA+0x008 R/W Host Controller Command Status Register 0x0000_0000 

HcInterruptStatus USBH_BA+0x00C R/W  Host Controller Interrupt Status Register 0x0000_0000 

HcInterruptEnable USBH_BA+0x010 R/W Host Controller Interrupt Enable Register 0x0000_0000 

HcInterruptDisable USBH_BA+0x014 R/W Host Controller Interrupt Disable Register 0x0000_0000 

HcHCCA USBH_BA+0x018 R/W Host Controller Communication Area Register 0x0000_0000 

HcPeriodCurrentED USBH_BA+0x01C R/W Host Controller Period Current ED Register 0x0000_0000 

HcControlHeadED USBH_BA+0x020 R/W Host Controller Control Head ED Register 0x0000_0000 

HcControlCurrentED USBH_BA+0x024 R/W Host Controller Control Current ED Register 0x0000_0000  

HcBulkHeadED USBH_BA+0x028 R/W Host Controller Bulk Head ED Register 0x0000_0000 

HcBulkCurrentED USBH_BA+0x02C R/W Host Controller Bulk Current ED Register 0x0000_0000 

HcDoneHead USBH_BA+0x030 R/W Host Controller Done Head Register 0x0000_0000 

HcFmInterval USBH_BA+0x034 R/W Host Controller Frame Interval Register 0x0000_2EDF 

HcFmRemaining USBH_BA+0x038 R Host Controller Frame Remaining Register 0x0000_0000 

HcFmNumber USBH_BA+0x03C R Host Controller Frame Number Register 0x0000_0000 

HcPeriodicStart USBH_BA+0x040 R/W Host Controller Periodic Start Register 0x0000_0000 

HcLSThreshold USBH_BA+0x044 R/W Host Controller Low-speed Threshold Register 0x0000_0628 

HcRhDescriptorA USBH_BA+0x048 R/W Host Controller Root Hub Descriptor A Register 0x0000_0908 

HcRhDescriptorB USBH_BA+0x04C R/W Host Controller Root Hub Descriptor B Register 0x0000_0000 

HcRhStatus USBH_BA+0x050 R/W Host Controller Root Hub Status Register 0x0000_0000 

HcRhPortStatus0 USBH_BA+0x054 R/W Host Controller Root Hub Port Status [0] 0x0000_0000 

HcRhPortStatus1 USBH_BA+0x058 R/W Host Controller Root Hub Port Status [1] 0x0000_0000 

HcRhPortStatus2 USBH_BA+0x05C R/W Host Controller Root Hub Port Status [2] 0x0000_0000 

HcRhPortStatus3 USBH_BA+0x060 R/W Host Controller Root Hub Port Status [3] 0x0000_0000 

HcRhPortStatus4 USBH_BA+0x064 R/W Host Controller Root Hub Port Status [4] 0x0000_0000 



 NUC980 

May 2, 2019  Page 201 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Register Offset R/W Description Reset Value 

HcRhPortStatus5 USBH_BA+0x068 R/W Host Controller Root Hub Port Status [5] 0x0000_0000 

HcRhPortStatus6 USBH_BA+0x06C R/W Host Controller Root Hub Port Status [6] 0x0000_0000 

HcRhPortStatus7 USBH_BA+0x070 R/W Host Controller Root Hub Port Status [7] 0x0000_0000 

HcPhyControl USBH_BA+0x200 R/W Host Controller PHY Control Register 0x0000_0000 

HcMiscControl USBH_BA+0x204 R/W Host Controller Miscellaneous Control Register 0x0000_0000 

EHCVNR HSUSBH_BA+0x000 R EHCI Version Number Register 0x0095_0020 

EHCSPR HSUSBH_BA+0x004 R EHCI Structural Parameters Register 0x0000_0012 

EHCCPR HSUSBH_BA+0x008 R EHCI Capability Parameters Register 0x0000_0000 

UCMDR HSUSBH_BA+0x020 R/W USB Command Register 0x0008_0000 

USTSR HSUSBH_BA+0x024 R/W USB Status Register 0x0000_1000 

UIENR HSUSBH_BA+0x028 R/W USB Interrupt Enable Register 0x0000_0000 

UFINDR HSUSBH_BA+0x02C R/W USB Frame Index Register 0x0000_0000 

UPFLBAR HSUSBH_BA+0x034 R/W USB Periodic Frame List Base Address Register 0x0000_0000 

UCALAR HSUSBH_BA+0x038 R/W USB Current Asynchronous List Address Register 0x0000_0000 

UASSTR HSUSBH_BA+0x03C R/W USB Asynchronous Schedule Sleep Timer Register 0x0000_0BD6 

UCFGR HSUSBH_BA+0x060 R/W USB Configure Flag Register 0x0000_0000 

UPSCR0 HSUSBH_BA+0x064 R/W USB Port 0 Status and Control Register 0x0000_2000 

UPSCR1 HSUSBH_BA+0x068 R/W USB Port 1 Status and Control Register 0x0000_2000 

USBPCR0 HSUSBH_BA+0x0C4 R/W USB PHY 0 Control Register 0x0000_0060 

USBPCR1 HSUSBH_BA+0x0C8 R/W USB PHY 1 Control Register 0x0000_0020 

  



 NUC980 

May 2, 2019  Page 202 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

22 CAN 

22.1 Overview 

The C_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers and 
Module Interface. The CAN Core performs communication according to the CAN protocol version 2.0 
part A and B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the 
physical layer, additional transceiver hardware is required.  

For communication on a CAN network, individual Message Objects are configured. The Message 
Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message 
RAM. All functions concerning the handling of messages are implemented in the Message Handler. 
These functions include acceptance filtering, the transfer of messages between the CAN Core and the 
Message RAM, and the handling of transmission requests as well as the generation of the module 
interrupt.  

The register set of the C_CAN can be accessed directly by the software through the module interface. 
These registers are used to control/configure the CAN Core and the Message Handler and to access 
the Message RAM. 

22.2 Features 

 Supports CAN protocol version 2.0 part A and B  

 Bit rates up to 1 MBit/s  

 32 Message Objects  

 Each Message Object has its own identifier mask  

 Programmable FIFO mode (concatenation of Message Objects)  

 Maskable interrupt  

 Disabled Automatic Re-transmission mode for Time Triggered CAN applications  

 Programmable loop-back mode for self-test operation  

 16-bit module interfaces to the AMBA APB bus  

 Supports wake-up function  

22.3 Block Diagram 

The C_CAN interfaces with the AMBA APB bus. The following figure shows the block diagram of the 
C_CAN. 

 CAN Core 

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of 
messages. 

 Message RAM 

Stores Message Objects and Identifier Masks 

 Registers 

All registers used to control and to configure the C_CAN. 

 Message Handler 

State Machine that controls the data transfer between the Rx/Tx Shift Register of the 
CAN Core and the Message RAM as well as the generation of interrupts as programmed 
in the Control and Configuration Registers. 



 NUC980 

May 2, 2019  Page 203 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Module Interface 

C_CAN interfaces to the AMBA APB 16-bit bus from Arm. 

 

Figure 22.3-1 CAN Controller Block Diagram 

  



 NUC980 

May 2, 2019  Page 204 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

22.4 Functional Description 

 CAN Protocol  

 

Figure 22.4-1 CAN Protocol 

The CAN Data Frame format consist SOF, Arbitration Field, Control Field, Data Field, CRC field, ACK 
Field and EOF. 

Describe as follow: 

 SOF                  Start of Frame 

 Arbitration Field  Any potential bus conflicts are resolved by bitwise arbitration 

 Control Field   include 4 bits Data Length Code and 2 bits Reserved Bits 

 Data Field   containing from zero to eight bytes 

 CRC Field   containing a fifteen bit cyclic redundancy check code 

 ACK Field   an empty slot which will be filled by every node that 
receives the frame 
                             it does NOT say that the node you intended the data for got it, 
just that at  

 least one node on the whole network got it 

 EOF              End of Frame 

 

 CAN Baud Rate Setting 

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s .  

CAN transfer rate f_speed can be show：𝑓𝑠𝑝𝑒𝑒𝑑 = 1
𝑡𝑁𝐵𝑇

⁄  

t_NBT is bit time.  

According to the CAN specification, the bit time is divided into four segments (see the following figure). 
The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1 and the 
Phase Buffer Segment 2： 

 The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the 
CAN bus level are expected to occur. The distance between an edge that occurs outside 
of Sync_Seg, and the Sync_Seg is called the phase error of that edge. 

 The Propagation Time Segment, Prop_Seg, is intended to compensate for the physical 
delay times within the CAN network. 

 The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point. 
The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may 



 NUC980 

May 2, 2019  Page 205 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

  

    
 

 

     

            

     

 

    

       
        

move the Sample Point inside the limits defined by the Phase Buffer Segments to 
compensate for edge phase errors. 

 

Nominal CAN Bit Time 

                              

 

Sync_ Seg Prop_Seg  Phase_Seg1     Phase_Seg2 

 

 

1 Time Quantum( tq ) 

                                Sample Point 

 

 

Figure 22.4-2 CAN Bit Time 

The length of the bit time is [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] *tq 

The bit time may consist of 4 to 25 time quanta. 

The length of the time quantum tq is  

𝑡𝑞 =
(𝐵𝑃𝑅 + 1)

𝑓𝐴𝑃𝐵_𝐶𝐿𝐾
⁄  

BRP: Baud Rate PreScaler Value 

𝑓𝐴𝑃𝐵_𝐶𝐿𝐾 : System Clock 

 

 

Figure 22.4-3 CAN Clock 

In these bit timing registers of CAN controller 

TSEG1 + 1 = (𝑡𝑃𝑅𝑂𝑃𝑆𝐸𝐺
+ 𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1)𝑡𝑞 

TSEG2 + 1 = (𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2)𝑡𝑞 

𝑡𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 = 1 𝑡𝑞 



 NUC980 

May 2, 2019  Page 206 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

TSEG1, TSEG2 are the control bit of register CAN_BTIME. 

According above describe, we can find the baud-rate function： 

𝑓𝑠𝑝𝑒𝑒𝑑 =  1
𝑡𝑁𝐵𝑇

⁄ = 1
( 𝑡𝑆𝑌𝑁𝐶_𝑆𝐸𝐺 + 𝑡𝑃𝑅𝑂𝑃_𝑆𝐸𝐺 +𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺1 +𝑡𝑃𝐻𝐴𝑆𝐸_𝑆𝐸𝐺2)⁄  

= 1
(1 + (𝑇𝑆𝐸𝐺1 + 1) + (𝑇𝑆𝐸𝐺2 + 1))𝑡𝑞

⁄  

= 1

(𝑇𝑆𝐸𝐺1 + 𝑇𝑆𝐸𝐺2 + 3) (
(𝐵𝑃𝑅 + 1)

𝑓𝐴𝑃𝐵_𝐶𝐿𝐾
⁄ )

⁄  

=
𝑓𝐴𝑃𝐵_𝐶𝐿𝐾

(𝑇𝑆𝐸𝐺1 + 𝑇𝑆𝐸𝐺2 + 3) (𝐵𝑃𝑅 + 1)⁄  

fAPB_CLK : System clock 

TSEG1, TSEG2 and BPR are the control bit filed of register CAN_BITME 

For Example: 

If CAN bus baud-rate is 1000kbps, CPU APB clock is 75 MHz，we can set TSEG1 =6, TSEG2 =6, 

BPR =4. The speed is : 

𝑓𝑠𝑝𝑒𝑒𝑑 =
𝑓𝐴𝑃𝐵_𝐶𝐿𝐾

(𝑇𝑆𝐸𝐺1 + 𝑇𝑆𝐸𝐺2 + 3) (𝐵𝑃𝑅 + 1)⁄  

= 75000000
(6 + 6 + 3) (4 + 1)⁄  

= 1000 𝑘𝑏𝑝𝑠 

We also can set TSEG1 =7, TSEG2 =5, other parameter not change, the CAN speed will keep on 
1000 kbps, but the sample point will be changed. 

 

 CAN Module Register 

CAN module register address base is CAN0_BA=0xB800_0000，There are three module of CAN 

registers: CAN Protocol Related Registers, Message Interface Registers and Message Handler 
Registers. These registers address base show as follow: 

 

Register Module Offset Register name 

CAN Protocol Related Registers 0x00 ~ 0x18 

CAN_CON CAN_STATUS 

CAN_ERR CAN_BTIME 

CAN_IIDR CAN_TEST 

CAN_BRPE  

Message Interface Registers 0x20 ~ 0xA8 

CAN_IFn_CREQ* CAN_IFn_CMASK* 

CAN_IFn_MASK1* CAN_IFn_MASK2* 

CAN_IFn_ARB1* CAN_IFn_ARB2* 

CAN_IFn_MCON* CAN_IFn_DAT_An* 

CAN_IFn_DAT_Bn*  

Message Handler Registers 0x100 ~ 0x164 CAN_TXREQn* CAN_NDATn* 



 NUC980 

May 2, 2019  Page 207 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CAN_IPNDn* CAN_MVLD1n* 

   *： n=1 or 2 

Table 22.4-1 CAN Module Register 

 CAN Protocol Related Registers 

These registers are related to the CAN protocol controller in the CAN Core. They control 
the operating modes and the configuration of the CAN bit timing and provide status 
information. 

 Message Interface Register Sets 

There are two sets of Interface Registers which are used to control the CPU access to 
the Message RAM. The Interface Registers avoid conflicts between CPU access to the 
Message RAM and CAN message reception and transmission by buffering the data to be 
transferred. 

 Message Handler Registers 

All Message Handler registers are read-only. Their contents (TxRqst, NewDat, IntPnd, 
and MsgVal bits of each Message Object and the Interrupt Identifier) is status information 
provided by the Message Handler FSM. 

These registers relationship show in follow fig: 

 

APB BUS

Interface Command 

Registers

IF1 Command Request

IF1 Command Mask

IF2 Command Request

IF2 Command Mask

IF1 MASK1,2

IF1 Aritration1/2

IF1 Message CTRL

IF1 DATA A 1/2

IF1 DATA B 1/2

IF2 MASK1/2

IF2 Aritration 1/2

IF2 Message CTRL

IF2 DATA A 1/2

IF2 DATA B 1/2

Message Buffer 

Registers

Message RAM

Message Object 1

Message Object 2

.

.

Message Object 32

Message Handler

Transmission Request 1/2

New Data 1/2

Interrupt Pending 1/2

Message Valid 1/2

 

CAN Core / 

Shift Registers

CAN BUS

Write Transfer

Read Transfer

  
Transmit

Receive

Transmit a 

message object

Transmit a 

CAN frame

 

Figure 22.4-4 CAN Message Handling 

The configuration of the Message Objects in the Message RAM will (with the exception of the bits 
MsgVal, NewDat, IntPnd, and TxRqst) not be affected by resetting the chip. All the Message Objects 
must be initialized by the CPU or they must be not valid (MsgVal = ‘0’) and the bit timing must be 
configured before the CPU clears the Init bit in the CAN Control Register. The configuration of a 
Message Object is done by programming Mask, Arbitration, Control and Data field of one of the two 
interface register sets to the desired values. By writing to the corresponding IFx Command Request 
Register, the IFx Message Buffer Registers are loaded into the addressed Message Object in the 



 NUC980 

May 2, 2019  Page 208 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Message RAM. When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller 
state machine of the CAN_Core and the Message Handler State Machine control the C_CAN’s 
internal data flow. Received messages that pass the acceptance filtering are stored into the Message 
RAM, messages with pending transmission request are loaded into the CAN_Core’s Shift Register 
and are transmitted via the CAN bus. The CPU reads received messages and updates messages to 
be transmitted via the IFx Interface Registers. Depending on the configuration, the CPU is interrupted 
on certain CAN message and CAN error events. 

Transfer CAN Message 

The C_CAN Module include two Mode : Normal Mode and Basic Mode.  

In Basic mode: 

The C_CAN module runs without the Message RAM. The IF1 Registers are used as Transmit Buffer. 
The IF2 Registers are used as Receive Buffer. After the reception of a message the contents of the 
shift register is stored into the IF2 Registers.  

In Basic Mode, the transmit message flow as below fig. : 

 

Figure 22.4-5 CAN Transmit Message 

We can follow below steps to transfer a message to CAN bus: 

1. Set CAN bus Baud rate. (Reference sector 22.4.2) 

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2]) 

3. Set transmit message to IF1 registers. 



 NUC980 

May 2, 2019  Page 209 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

4. Set bit BUSY(CAN_CREQ[15]) to start transfer message. This bit will be auto-cleared when 
finish transmitting .  

When use Basic Mode, please care following status: 

 Make sure CAN Module enter Test Mode 

 Make sure the bit BUSY(CAN_CREQ[15]) is set “1”. 

 Receive CAN Message 

There two method to receive CAN message: one is polling the bit NEWDAT(CAN_IFn_MCON[15]) the 
other is use Rx interrupt. The received message will be store to IF2 registers. 

Following fig. means the flow of polling bitNEWDAT(CAN_IFn_MCON[15]): 

 

Figure 22.4-6 CAN Receive Message Using Polling Mode 

 In Basci Mode, use polling mode to receive message flow below: 

1. Set CAN bus Baud rate. (Reference sector 22.4.2) 



 NUC980 

May 2, 2019  Page 210 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2]) 

3. Polling bit NEWDAT(CAN_IF2_MCON[15]) until this bit be set “1” 

4. Read CAN_IF2 registers can get received message. 

 

Following fig. shows the flow that use RX_OK interrupt to receive message: 

 

Figure 22.4-7 CAN Receive Message Using Interrupt Mode 

 In Basic Mode, use RX_OK interrupt to receive message flow as follow: 

1. Set CAN bus Baud rate. (Reference sector 22.4.2) 

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2]) 

3. Enable interrupt and status change interrupt: Set bit IE(CAN_CON[1]) and bit 
SIE(CAN_CON[2]). 

4. Wait interrupt happened. If bit RX_OK(CAN_STATUS[4]) is “1”, means CAN module receive a 
message. Read IF2 registers can get this message.  

 

 Wakeup Function 

Set bit WAKEUP_EN(CAN_WU_EN[0]) can enable wakeup function. And User can 

wake-up system when there is a falling edge in the CAN_Rx pin.  

22.5 Register Map 

R: read only, W: write only, R/W: both read and write. 



 NUC980 

May 2, 2019  Page 211 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Register Offset R/W Description Reset Value 

CAN0_BA = 0xB00A_0000 

CAN1_BA = 0xB80A_1000 

CAN1_BA = 0xB80A_2000 

CAN1_BA = 0xB80A_3000 

CAN_CON CANx_BA+0x00 R/W Control Register 0x0000_0001 

CAN_STATUS CANx_BA+0x04 R/W Status Register 0x0000_0000 

CAN_ERR CANx_BA+0x08 R Error Counter 0x0000_0000 

CAN_BTIME CANx_BA+0x0C R/W Bit Timing Register 0x0000_2301 

CAN_IIDR CANx_BA+0x10 R Interrupt Identifier Register 0x0000_0000 

CAN_TEST CANx_BA+0x14 R/W Test Register *(1) 

CAN_BRPE CANx_BA+0x18 R/W BRP Extension Register 0x0000_0000 

CAN_IF1_CREQ 

CAN_IF2_CREQ 

CANx_BA+0x20 

CANx_BA+0x80 
R/W IFn (*2) Command Request Registers 0x0000_0001 

CAN_IF1_CMASK 

CAN_IF2_CMASK 

CANx_BA+0x24 

CANx_BA+0x84 
R/W IFn Command Mask Registers 0x0000_0000 

CAN_IF1_MASK1 

CAN_IF2_MASK1 

CANx_BA+0x28 

CANx_BA+0x88 
R/W IFn Mask 1 Register 0x0000_FFFF 

CAN_IF1_MASK2 

CAN_IF2_MASK2 

CANx_BA+0x2C 

CANx_BA+0x8C 
R/W IFn Mask 2 Register 0x0000_FFFF 

CAN_IF1_ARB1 

CAN_IF2_ARB1 

CANx_BA+0x30 

CANx_BA+0x90 
R/W IFn Arbitration 1 Register 0x0000_0000 

CAN_IF1_ARB2 

CAN_IF2_ARB2 

CANx_BA+0x34 

CANx_BA+0x94 
R/W IFn Arbitration 2 Register 0x0000_0000 

CAN_IF1_MCON 

CAN_IF2_MCON 

CANx_BA+0x38 

CANx_BA+0x98 
R/W IFn Message Control Registers 0x0000_0000 

CAN_IF1_DAT_An/  

CAN_IF1_DAT_Bn/ 

CAN_IF2_DAT_An/ 

CAN_IF2_DAT_Bn/ 

CANx_BA+0x3C~40 

CANx_BA+0x44~48 

CANx_BA+0x9C~A0 

CANx_BA+0xA4~A8 

R/W 

IFn Data An (*3) and Data Bn (*3) Registers  

eg:  CAN_IF1_DAT_A1 = CAN_BA+0x3Ch 

       CAN_IF1_DAT_A2 = CAN_BA+0x40h 

0x0000_0000 

CAN_TXREQ1 

CAN_TXREQ2 

CANx_BA+0x100 

CANx_BA+0x104 
R Transmission Request Registers 1 & 2 0x0000_0000 

CAN_NDAT1 

CAN_NDAT2 

CANx_BA+0x120 

CANx_BA+0x124 
R New Data Registers 1 & 2 0x0000_0000 

CAN_IPND1 

CAN_IPND2 

CANx_BA+0x140 

CANx_BA+0x144 
R Interrupt Pending Registers 1 & 2 0x0000_0000 

CAN_MVLD1 

CAN_MVLD2 

CANx_BA+0x160 

CANx_BA+0x164 
R Message Valid Registers 1 & 2 0x0000_0000 

CAN_WU_EN CANx_BA+0x168 R/W Wake-up Function Enable 0x0000_0000 



 NUC980 

May 2, 2019  Page 212 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CAN_WU_STATUS CANx_BA+0x16C R/W Wake-up Function Status 0x0000_0000 



 NUC980 

May 2, 2019  Page 213 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

23 FLASH MEMORY INTERFACE (FMI) 

23.1 Overview 

The Flash Memory Interface (FMI) of this Chip has DMA unit and FMI unit. The DMA unit provides a 
DMA (Direct Memory Access) function for FMI to exchange data between system memory (ex. 
SDRAM) and shared buffer (128 bytes), and the FMI unit control the interface of SD0/eMMC0 or 
NAND Flash. The interface controller can support SD0/eMMC0 and NAND-type Flash and the FMI is 
cooperated with DMAC to provide a fast data transfer between system memory and cards. 

23.2 Features 

 Supports single DMA channel and address in non-word boundary 

 Supports hardware Scatter-Gather function 

 Supports 128 Bytes shared buffer for data exchange between system memory and Flash 
device. (Separate into two 64 bytes ping pong FIFO) 

 Supports SD0/eMMC0 Flash device 

 Supports SLC and MLC NAND type Flash 

 Adjustable NAND page sizes. (2048B+spare area, 4096B+spare area, and 8192B+spare 
area) 

 Supports up to 8-bit/12-bit/24-bit hardware ECC calculation circuit to protect data 
communication 

 Supports programmable NAND timing cycle  

23.3 Block Diagram 

A
H

B
 I
n

te
rf

a
c

e

Bus 

Interface 

Unit

Control, Status

Register

DMA

Controller

NAND Flash

Controller

eMMC

Controller

FIFO

eMMC_CLK

eMMC_CMD

eMMC_DATA[7:0]

NAND_nCS0

NAND_nWP

NAND_ALE

NAND_CLE

NAND_nWE

NAND_nRE

NAND_RDY

NAND_DATA[7:0]

 

Figure 23.3-1 FMI Block Diagram 



 NUC980 

May 2, 2019  Page 214 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

23.4 Functional Description 

Flash Memory Interface (FMI) has DMA unit and FMI unit. The FMI unit has NAND controller and SD 
controller. The following sections will separate to describe each process steps. 

 DMA and FMI Global Control 

DMA controller provides a direct memory access function. User only needs to fill the starting address 
and enable it, and DMAC can handle the data transmission automatically. DMA controller has a 128 
bytes share buffer – separate to two 64 bytes ping pong FIFO. It can use the ping pong mechanism to 
provide multi-block transfer. When FMI is idle, the share buffer can be accessed directly by software. 

FMI interface supports SD card and NAND-type Flash. FMI and DMAC provide fast data transfer 
between system memory and the card. Since DMAC only a single channel, which means that only one 
interface can be activated at the same time. SD and NAND are not coexisted. 

To enable FMI and DMAC, please follow the steps below: 

1. Set FMI_DMACTL register DMACEN bit and DMARST bit. 

2. Polling FMI_DMACTL register DMARST bit until it was cleared. 

3. Set FMI_GCTL register GCTLRST bit. 

4. Polling FMI_GCTL register GCTLRST bit until it was cleared. 

 NAND Flash 

FMI provides NAND-type Flash memory access interface. This NAND-type Flash memory controller 
provides all the necessary signals. User can easily generate the signals based on device specification. 
(Such as command port, address port and data port). It supports four different page size, 2048 bytes, 
4096 bytes and 8192 bytes. For different NAND, user needs to adjust the timing parameters 
(FMI_NANDTMCTL register) to meet the NAND Flash memory device specification. Periodic to adjust 
the timing parameters can also improve the performance of data transmission. 

NAND-type Flash memory controller provides a BCH error correction algorithm. This ECC calculation 
circuit supports up to 8-bit, 12-bit or 24-bit error. User can check the error from reading 
FMI_NANDINTSTS register ECC_FLD_IF bit, and also can get the error information from reading 
FMI_NANDECCESn register. If needs doing correction, user should read the FMI_NANDECCEAx and 
FMI_NANDECCEDx register to correct it. 

For 2K/4K/8K Page size NAND Flash with BCH algorithm, T can be t8, t12 or t24. Based on the page 
size and T setting, FMI generate different size of parity data. The number of byte for parity data in 
different page size and T setting listed in the table shown below. The data arrangement of redundant 
area is as figure shown below. 

It’s recommended to choose appropriate T based on NAND Flash page size and redundant area size. 

BCH algorithm 
Parity (Byte) 
512 Page size 

Parity (Byte) 
2048 Page size 

Parity (Byte) 
4096 Page size 

Parity (Byte) 
8192 Page size 

BCH T8 15 60 120 240 

BCH T12 23 92 184 368 

BCH T24 No support 90 180 360 

Table 23.4-1 BCH Aolgorithm redundant area usage 

For example: 

1. page size 2048+64 bytes, BCH T8, the spare area layout is  



 NUC980 

May 2, 2019  Page 215 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

Figure 23.4-1 2048 + 64 Page Size Spare Area Layout 

2. Page size 2048+128 bytes, BCH T24, the spare area layout is  

 

Figure 23.4-2 2048 + 128 Page Size Spare Area Layout 

About the device detail programming rule, please reference "Software Driver of SmartMedia", 
"SmartMedia Electrical Specifications", "SmartMedia Physical Format Specifications" and 
"SmartMedia Logical Format Specifications". 

 NAND Initialize 

To initial NAND controller, please follow the steps below: 

1. Set CLK_HCLKEN register FMI and NAND bit. 

2. Select the multiple function pin. Set the value 0x33333330 into SYS_GPC_MFPL register, and 
0x33333333 into SYS_GPC_MFPH register. 

3. Set FMI_GCTL register NAND_EN bit to enable NAND function. 

4. Set FMI_NANDECTL register WP bit to disable NAND-type Flash memory write-protect. 

5. Set FMI_NANDCTL register CS0 bit to 0 to select NAND chip. 

 Reset NAND Flash 

Reset NAND-type Flash memory, please follow the steps below: 

1. Send “RESET” command 0xFF to FMI_NANDCMD register. 

2. Polling RB#. Check FMI_NANDINTSTS register RB0_IF bit until it was set. And then clear 
FMI_NANDINTSTS register RB0_IF bit. 

 Identify NAND Flash 

Identify NAND-type Flash, please follow the steps below: 

1. Send “Read ID” command 0x90 to FMI_NANDCMD register 

2. FMI_NANDADDR register ADDRESS bit fill address 0x00, and set EOA bit. 

3. Get the ID from FMI_NANDDATA register. 

4. Get the NAND page size, ECC correct information from ID. And then set the FMI_NANDCTL 
register PSIZE and BCH_TSEL bit. 

5. Set the redundant area depend on ID or specification. FMI_NANDRACTL register RA128EN 
bit. 

 Erase NAND Flash 

Erase NAND-type Flash, please follow the steps below: 

1. Send “Block Erase” command 0x60 to FMI_NANDCMD register. 

15 15151542048 bytes

T8
15 bytes / 512 bytes

Data area Spare area

45 45382048 bytes

T24
45 bytes / 1024 bytes

Data area Spare area



 NUC980 

May 2, 2019  Page 216 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

2. Fill the row address from low to high into FMI_NANDADDR register. Please reference the 
figure below. 

3. Set FMI_NANDADDR register EOA bit. 

4. Send “Erase” command 0xD0 to FMI_NANDCMD register. 

5. Polling RB#. Check the FMI_NANDINTSTS register RB0_IF bit until it was set. And then clear 
FMI_NANDINTSTS register RB0_IF bit. 

6. Send “Read Status” command 0x70 to FMI_NANDCMD register. 

7. Get the status from FMI_NANDDATA register, and check the bit 0. 1: Fail; 0: Pass. 

Address Cycle D7 D6 D5 D4 D3 D2 D1 D0  

1st Cycle A7 A6 A5 A4 A3 A2 A1 A0 

Column Address 

2nd Cycle L L A13 A12 A11 A10 A9 A8 

3rd Cycle A21 A20 A19 A18 A17 A16 A15 A14 

Row Address 

Page address: A14~A21 

Block Address: A22 ~  

L: must be "Low" 

4th Cycle A29 A28 A27 A26 A25 A24 A23 A22 

5th Cycle L L L L A33 A32 A31 A30 

Table 23.4-2 NAND Access Address Cycle 

 Write NAND Flash 

NAND-type Flash page write access, please follow the steps below: 

1. Fill target address to FMI_DMASA register. 

2. Fill 0x0000FFFF to FMI_NANDRA0 register. It means this page was used. 

3. Send “Serial Input” command 0x80 to FMI_NANDCMD register. 

4. Fill column address from low to high into FMI_NANDADDR register. The column address 
usually fills 0, start from one page. 

5. Fill row address from low to high into FMI_NANDADDR register. 

6. Set FMI_NANDADDR register EOA bit. 

7. Clear FMI_NANDINTSTS register DMA_IF and ECC_FLD_IF bit. 

8. Set FMI_NANDCTL register REDUN_AUTO_WEN bit to enable auto-write redundant area. 

9. Set FMI_NANDCTL register DWR_EN bit to enable DMA output data to NAND. 

10. Polling DWR_EN bit until it was cleared. Or polling FMI_NANDINTSTS register DMA_IF bit. 

11. Send “Program” command 0x10 to FMI_NANDCMD register. 

12. Polling RB#. Check FMI_NANDINTSTS register RB0_IFbit until it was set. And then clear 
FMI_NANDINTSTS register RB0_IF bit. 

13. Send “Read Status” command 0x70 to FMI_NANDCMD register. 

14. Get the status from FMI_NANDDATA register, and check the bit 0. 1: Fail; 0: Pass. 



 NUC980 

May 2, 2019  Page 217 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Read NAND Flash 

Before NAND-type Flash page read, user should read the redundant area first. NAND controller needs 
the redundant area ECC parity bytes for error correction. All page read access, please follow the steps 
below: 

1. Get redundant area size from FMI_NANDRACTL register RA128EN bit. 

2. Send “Read” command 0x00 to FMI_NANDCMD register. 

3. Fill column address from low to high into FMI_NANDADDR register. 

4. Fill row address from low to high into FMI_NANDADDR register. 

5. Set FMI_NANDADDR register EOA bit. 

6. Send “Read Data” command 0x30 to FMI_NANDCMD register. 

7. Polling RB#. Check FMI_NANDINTSTS register RB0_IF bit until it was set. And then clear 
FMI_NANDINTSTS register RB0_IF bit. 

8. According to the size of redundant area, read out one by one by FMI_NANDDATA register to 
write redundant area data into FMI_NANDRAn register. 

9. Read data. Repeat step 2 ~ 7. The column address should be 0 for each page starting. 

10. Fill target address to FMI_DMASA register. 

11. Clear FMI_NANDINTSTS register DMA_IF and ECC_FLD_IF bit. 

12. Set FMI_NANDCTL register DRD_EN bit to enable DMA to get NAND data. 

13. Polling DRD_EN bit until it was cleared. Or polling FMI_NANDINTSTS register DMA_IF bit. 

14. If FMI_NANDINTSTS register ECC_FLD_IF bit was set, it means that data error. User should 
active error correction. (Refer to the error correction step for more detail). 

 NAND Flash ECC Correction 

BCH error correction algorithm can correct up to 8-bit, 12-bit, 15-bit or 24-bit errors. In addition to 24-
bit computing unit is 1024 bytes, others are 512 bytes. 

NAND-type Flash memory error correction, please follow the steps below: 

1. Read FMI_NANDECCESn register Fx_STAT bit to check whether the error can be corrected. 

2. If errors can be corrected, read FMI_NANDECCESn register Fx_ECNT bit to get the number 
of errors. 

3. According to the page size and BCH algorithm to calculate the correct region. Get the legal 
FMI_NANDECCEDn and FMI_NANDECCEAn register. 

4. Reads FMI_NANDECCEDn register to get incorrect data. Then get the wrong data address 
according to FMI_NANDECCEAn register and obtain input data. These two data do XOR. The 
result is the correct data. 

 SD/eMMC 

FMI provides an SD/eMMC control interface. This SD/eMMC controller supports 1-bit / 4-bit bus width. 
The controller can generates all types command and response. The response content will save at 
FMI_EMMCRESP0 and FMI_EMMCRESP1 register. About output frequency to SD/eMMC card, user 
should control the CLKDIV3 register. Detailed procedural rules relate to the card, please refer to "SD 
Memory Card Specifications Part 1" and "The MultiMediaCard System Specification" , “JEDEC 
Standard No. 84-A441” and the manufactures eMMC datasheet. 

 



 NUC980 

May 2, 2019  Page 218 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

Figure 23.4-3 SD Memory Card State Diagram (Card Identification Mode) 

 

Power On

CMD0

CMD8

ACMD41 

with HCS=0

ACMD41 with 

HCS=0 or 1

Ver2.00 or later SD 

Memory Card 

Card with compatible 

Voltage range

Ver2.00 or later SD Memory 

Card(voltage mismatch) or Ver1.X SD 

memory card or not SD memory card 

Valid 

Response?

Card is 

ready?

CCS in 

Response?

Card is 

ready?

Unusable 

Card

Unusable 

Card

Not SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

CMD2

CMD3

Unusable 

Card

Card returns ready

CCS=0

CCS=1

No response

Card returns busy

No response

Card returns ready

Card return response

If host support high capacity, 

HCS is set to 1

Card returns busy

Stand-by State



 NUC980 

May 2, 2019  Page 219 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

Figure 23.4-4 SD Memory Card State Diagram (Date Transfer Mode) 

 SD/eMMC Initialize 

SD/eMMC initialize, please follow the steps below 

1. Set CLK_HCLKEN register FMI, NAND and eMMC bit. 

2. Set the value 0x66600000 to SYS_GPC_MFPL register, and 0x00060666 to 
SYS_GPC_MFPH register. 

3. Set FMI_GCTL register eMMCEN bit to enable SD/eMMC. 

4. Set FMI_EMMCCTL register CTLRST bit. 

5. Polling FMI_EMMCCTL register CTLRST bit until it was cleared 

6. Set SD/eMMC initial output frequency to 300 kHz, and 1-bit bus for SD/eMMC interface 

7. Set FMI_EMMCCTL register CLK74OE bit 

8. Polling FMI_EMMCCTL register CLK74OE bit until it was cleared 

9. According to devices programming rule to send command to SD/eMMC 

10. When device get into Data Transfer Mode, the output frequency can set to suitable clock. 
Such as 25 MHz. And the bus width is 4-bit mode 

 Send Command 

Send command to SD/eMMC, please follow the steps below: 

1. Set the argument to FMI_EMMCCMD register. 

2. Set command to FMI_EMMCCTL register CMDCODE bit. 

3. Set FMI_EMMCCTL register COEN bit to enable command out. 

4. Polling FMI_EMMCCTL register COEN bit until it was cleared 

 Get Response 

Get response from SD/eMMC, please follow the steps below: 

1. Set FMI_EMMCCTL register RIEN bit to enable response in. 

2. Set FMI_EMMCCTL register RIEN bit to enable response in 

Stand-by State

Receive data 

State

Disconnect State
Programming 

State

Transfer State

Sending data 

State

CMD7

CMD12
CMD7

CMD7

CMD12
CMD6,17,18,30,56

ACMD13,22,51

CMD16,32,33

ACMD6,42,23

CMD24,25,26,27,42,56

CMD28,29,38

CMD4,9,10,3

CMD7

Operation complete

Operation

Complete



 NUC980 

May 2, 2019  Page 220 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Check FMI_EMMCINTSTS register CRC7 bit 

4. Get the response from FMI_EMMCRESP0 and FMI_EMMCRESP1 register 

 Read SD/eMMC 

SD/eMMC read access, please follow the steps below: 

1. Send CMD7 to enter transfer state. 

2. Set FMI_EMMCCTL register CLK8OE bit to output 8 clock cycles. Check FMI_EMMCINTSTS 
register DAT0 bit. Repeat step 2 until SD/eMMC is ready. 

3. Set block size to FMI_EMMCBLEN register. Such as 0x1FF is for 512 bytes. 

4. Set the read starting sector address to FMI_EMMCCMD register. 

5. Set the data target address to FMI_DMASA register. 

6. Check the read sector count. If the count is greater than 255, user should separate it. Set the 
sector count to FMI_EMMCCTL register BLKCNT bit. (255 is the limitation) 

7. Send CMD18 for multiple read. (Set 18 to FMI_EMMCCTL register CMDCODE bit) 

8. Set FMI_EMMCCTL register COEN, RIEN and DIEN bit to enable command out, response in 
and data in. 

9. Polling DIEN bit until it was cleared. Or waiting the interrupt (FMI_EMMCINTSTS register 
BLKD_IF bit) 

10. Check FMI_EMMCINTSTS register CRC7 and CRC16 bit. 

11. Send CMD12 to stop transfer. 

12. Set FMI_EMMCCTL register CLK8OE bit to output 8 clock cycles. Check FMI_EMMCINTSTS 
register DAT0 bit. Repeat step 12 until SD/eMMC is ready. 

13. Send CMD7 to idle state. 

 Write SD/eMMC 

SD/eMMC wrote access, please follow the steps below: 

1. Send CMD7 to enter transfer state. 

2. Set FMI_EMMCCTL register CLK8OE bit to output 8 clock cycles. Check FMI_EMMCINTSTS 
register DAT0 bit. Repeat step 2 until SD/eMMC is ready. 

3. Set block size to FMI_EMMCBLEN register. Such as 0x1FF is for 512 bytes. 

4. Set the write starting sector address to FMI_EMMCCMD register. 

5. Set the data source address to FMI_DMASA register. 

6. Check the write sector count. If the count is greater than 255, user should separate it. Set the 
sector count to FMI_EMMCCTL register BLKCNT bit. (255 is the limitation). 

7. Set CMD25 for multiple write. (Set 25 to FMI_EMMCCTL register CMDCODE bit). 

8. Set FMI_EMMCCTL register COEN, RIEN and DOEN bit to enable command out, response in 
and data out. 

9. Polling DOEN bit until it was cleared. Or waiting the interrupt (FMI_EMMCINTSTS register 
BLKDIF bit). 

10. Check FMI_EMMCINTSTS register CRCIF bit. If CRC error occurred, the state machine 
should software reset. (Set FMI_EMMCCTL register CTLRST bit) 

11. Send CMD12 to stop transfer. 

12. Set FMI_EMMCCTL register CLK8OE bit to output 8 clock cycles. Check FMI_EMMCINTSTS 



 NUC980 

May 2, 2019  Page 221 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

register DAT0 bit. Repeat step 12 until SD/eMMC is ready. 

13. Send CMD7 to Idle state. 

23.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

FMI Base Address: 

FMI_BA = 0xB001_9000 

FMI_BUFFERn 

n = 0, 1..31 

FMI_BA+0x000+0x
4*n 

R/W 
FMI Embedded Buffer Word n 

n = 0, 1..31 
0x0000_0000 

FMI_DMACTL FMI_BA+0x400 R/W FMI DMA Control Register 0x0000_0000 

FMI_DMASA FMI_BA+0x408 R/W FMI DMA Transfer Starting Address Register 0x0000_0000 

FMI_DMABCNT FMI_BA+0x40C R FMI DMA Transfer Byte Count Register 0x0000_0000 

FMI_DMAINTEN FMI_BA+0x410 R/W FMI DMA Interrupt Enable Register 0x0000_0001 

FMI_DMAINTSTS FMI_BA+0x414 R/W FMI DMA Interrupt Status Register 0x0000_0000 

FMI_GCTL FMI_BA+0x800 R/W FMI Global Control and Status Register 0x0000_0000 

FMI_GINTEN FMI_BA+0x804 R/W FMI Global Interrupt Control Register 0x0000_0001 

FMI_GINTSTS FMI_BA+0x808 R/W FMI Global Interrupt Status Register 0x0000_0000 

FMI_EMMCCTL FMI_BA+0x820 R/W SD0/eMMC0 Control Register 0x0101_0000 

FMI_EMMCCMDAR
G 

FMI_BA+0x824 R/W SD0/eMMC0 Command Argument Register 0x0000_0000 

FMI_EMMCINTEN FMI_BA+0x828 R/W SD0/eMMC0 Interrupt Enable Register 0x0000_0000 

FMI_EMMCINTSTS FMI_BA+0x82C R/W SD0/eMMC0 Interrupt Status Register 0x00XX_008C 

FMI_EMMCRESP0 FMI_BA+0x830 R SD0/eMMC0 Receiving Response Token Register 0 0x0000_0000 

FMI_EMMCRESP1 FMI_BA+0x834 R SD0/eMMC0 Receiving Response Token Register 1 0x0000_0000 

FMI_EMMCBLEN FMI_BA+0x838 R/W SD0/eMMC0 Block Length Register 0x0000_01FF 

FMI_EMMCTOUT FMI_BA+0x83C R/W SD0/eMMC0 Response/Data-in Time-out Register 0x0000_0000 

FMI_EMMCECR FMI_BA+0x840 R/W SD0/eMMC0 Extend Control Register 0x0000_0003 

FMI_NANDCTL FMI_BA+0x8A0 R/W NAND Flash Control Register 0x0288_0090 

FMI_NANDTMCTL FMI_BA+0x8A4 R/W NAND Flash Timing Control Register 0x0001_0105 

FMI_NANDINTEN FMI_BA+0x8A8 R/W NAND Flash Interrupt Enable Register 0x0000_0000 

FMI_NANDINTSTS FMI_BA+0x8AC R/W NAND Flash Interrupt Status Register 0x00XX_0000 

FMI_NANDCMD FMI_BA+0x8B0 W NAND Flash Command Port Register 0xXXXX_XXXX 

FMI_NANDADDR FMI_BA+0x8B4 W NAND Flash Address Port Register  0xXXXX_XXXX 

FMI_NANDDATA FMI_BA+0x8B8 R/W NAND Flash Data Port Register 0xXXXX_XXXX 

FMI_NANDRACTL FMI_BA+0x8BC R/W NAND Flash Redundant Area Control Register 0x0000_0000 

FMI_NANDECTL FMI_BA+0x8C0 R/W NAND Flash Extend Control Register 0x0000_0000 



 NUC980 

May 2, 2019  Page 222 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

FMI_NANDECCES0 FMI_BA+0x8D0 R NAND Flash ECC Error Status 0 Register 0x0000_0000 

FMI_NANDECCES1 FMI_BA+0x8D4 R NAND Flash ECC Error Status 1 Register 0x0000_0000 

FMI_NANDECCES2 FMI_BA+0x8D8 R NAND Flash ECC Error Status 2 Register 0x0000_0000 

FMI_NANDECCES3 FMI_BA+0x8DC R NAND Flash ECC Error Status 3 Register 0x0000_0000 

FMI_NANDPROTA0 FMI_BA+0x8E0 R/W NAND Flash Protect Region End Address 0 Register 0x0000_0000 

FMI_NANDPROTA1 FMI_BA+0x8E4 R/W NAND Flash Protect Region End Address 1 Register 0x0000_0000 

FMI_NANDECCEA0 FMI_BA+0x900 R NAND Flash ECC Error Byte Address 0 Register 0x0000_0000 

FMI_NANDECCEA1 FMI_BA+0x904 R NAND Flash ECC Error Byte Address 1 Register 0x0000_0000 

FMI_NANDECCEA2 FMI_BA+0x908 R NAND Flash ECC Error Byte Address 2 Register 0x0000_0000 

FMI_NANDECCEA3 FMI_BA+0x90C R NAND Flash ECC Error Byte Address 3 Register 0x0000_0000 

FMI_NANDECCEA4 FMI_BA+0x910 R NAND Flash ECC Error Byte Address 4 Register 0x0000_0000 

FMI_NANDECCEA5 FMI_BA+0x914 R NAND Flash ECC Error Byte Address 5 Register 0x0000_0000 

FMI_NANDECCEA6 FMI_BA+0x918 R NAND Flash ECC Error Byte Address 6 Register 0x0000_0000 

FMI_NANDECCEA7 FMI_BA+0x91C R NAND Flash ECC Error Byte Address 7 Register 0x0000_0000 

FMI_NANDECCEA8 FMI_BA+0x920 R NAND Flash ECC Error Byte Address 8 Register 0x0000_0000 

FMI_NANDECCEA9 FMI_BA+0x924 R NAND Flash ECC Error Byte Address 9 Register 0x0000_0000 

FMI_NANDECCEA1
0 

FMI_BA+0x928 R NAND Flash ECC Error Byte Address 10 Register 0x0000_0000 

FMI_NANDECCEA1
1 

FMI_BA+0x92C R NAND Flash ECC Error Byte Address 11 Register 0x0000_0000 

FMI_NANDECCED0 FMI_BA+0x960 R NAND Flash ECC Error Data Register 0 0x8080_8080 

FMI_NANDECCED1 FMI_BA+0x964 R NAND Flash ECC Error Data Register 1 0x8080_8080 

FMI_NANDECCED2 FMI_BA+0x968 R NAND Flash ECC Error Data Register 2 0x8080_8080 

FMI_NANDECCED3 FMI_BA+0x96C R NAND Flash ECC Error Data Register 3 0x8080_8080 

FMI_NANDECCED4 FMI_BA+0x970 R NAND Flash ECC Error Data Register 4 0x8080_8080 

FMI_NANDECCED5 FMI_BA+0x974 R NAND Flash ECC Error Data Register 5 0x8080_8080 

FMI_NANDRAn 

n = 0, 1..117 

FMI_BA+0xA00+0x
4*n 

R/W 
NAND Flash Redundant Area Word n 

n = 0, 1..117 
Undefined 



 NUC980 

May 2, 2019  Page 223 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

24 SECURE DIGITAL HOST CONTROLLER (SDH) 

24.1 Overview 

The Secure-Digital Card Host Controller (SDH) equips DMAC unit and SD unit. The DMAC unit 
provides a DMA (Direct Memory Access) function for SD to exchange data between system memory 
and shared buffer (128 bytes), and the SD unit controls the interface of SD / SDHC / SDIO. The SDH 
controller supports SD / SDHC / SDIO card and cooperates with DMAC to provide a fast data transfer 
between system memory and cards. 

24.2 Features 

 Supports single DMA channel 

 Supports hardware Scatter-Gather functionality 

 Supports 128 Bytes shared buffer for data exchange between system memory and cards 

 Supports SD, SDHC and SDIO card 

24.3 Block Diagram 

SD Unit

Engine Clock

HCLK

DMAC

Unit

Register

Decoder

DMAC

Controler

128 Byte

FIFO

FIFO

Interface

SD / SDHC

Controller

Sync. Circuit

GPIO

SD_DAT[3:0]SD_CMDSD_CLK SD_CD

AMBA Wrapper (Master / Slave)

AHB Bus

 

Figure 24.3-1 SD Host Controller Block Diagram 

 

  



 NUC980 

May 2, 2019  Page 224 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

24.4 Functional Description 

The Secure-Digital Card Host Controller (SDH) equips DMAC unit and SD unit. SDH provides a 
control interface for SD/SDHC/SDIO/MMC card access. The following sections have more detail 
description. 

 

Figure 24.4-1 SD Memory Card State Diagram (Card Identification Mode) 

Power On

CMD0

CMD8

ACMD41 

with HCS=0

ACMD41 with 

HCS=0 or 1

Ver2.00 or later SD 

Memory Card 

Card with compatible 

Voltage range

Ver2.00 or later SD Memory 

Card(voltage mismatch) or Ver1.X SD 

memory card or not SD memory card 

Valid 

Response?

Card is 

ready?

CCS in 

Response?

Card is 

ready?

Unusable 

Card

Unusable 

Card

Not SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

Ver1.X Standard 

Capacity SD 

memory Card

CMD2

CMD3

Unusable 

Card

Card returns ready

CCS=0

CCS=1

No response

Card returns busy

No response

Card returns ready

Card return response

If host support high capacity, 

HCS is set to 1

Card returns busy

Stand-by State



 NUC980 

May 2, 2019  Page 225 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

Figure 24.4-2 SD Memory Card State Diagram (Date Transfer Mode) 

 Global Control 

DMA Controller provides a Direct Memory Access function. After filling in the starting address and 
enables DMA, DMA would handle the data transfer automatically. There is a 128 bytes shared buffer 
inside DMA. This 128 bytes buffer is directly accessible when SDH is not in busy. 

This SDH controller provides one SD ports – port0. Each port can provide 1-bit / 4-bit data bus mode, 
card detect function and SDIO interrupt. User should set the output frequency to SD device by control 
CLKDIV9 register. About the device detail programming rule, please reference "SD Memory Card 
Specifications Part 1" and "The MultiMediaCard System Specification". 

To enable the SDH, please follow the steps below: 

1. Set CLK_HCLKEN register SDH bit. 

2. Set SDH_DMACTL register DMACEN and DMARST bit. 

3. Polling SDH_DMACTL register DMARST bit until it was cleared. 

4. Set SDH_GCTL register SDEN and GCTLRST bit. 

5. Polling SDH_GCTL register GCTLRST bit until it was cleared. 

6. Port 0 only has one set of multiple function pin (GPF0〜6). Fill value 0x02222222 into 

SYS_GPF_MFPL register to select Port 0. 

7. Clear SDH_ECTL register PWROFF0 bit to enable the power control. 

8. Set SDH_INTEN register CDxSRC bit to select SD card detection source.(DAT3 or GPIO). 

9. Set SDH initial output frequency is 300 kHz, bus width is 1-bit mode for Card Identification 
Mode. 

10. Set SDH_CTL register CLK74_OE bit. 

11. Polling SDH_CTL register CLK74_OE bit until it was cleared. 

12. Follow standard programming rule to send command to SD device. 

13. When device get into Data Transfer Mode, the output frequency can set to suitable clock. 
Such as 25 MHz. And the bus width is 4-bit mode. 

Stand-by State

Receive data 

State

Disconnect State
Programming 

State

Transfer State

Sending data 

State

CMD7

CMD12
CMD7

CMD7

CMD12
CMD6,17,18,30,56

ACMD13,22,51

CMD16,32,33

ACMD6,42,23

CMD24,25,26,27,42,56

CMD28,29,38

CMD4,9,10,3

CMD7

Operation complete

Operation

Complete



 NUC980 

May 2, 2019  Page 226 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Send Command 

Send command to SD card, please follow the steps below: 

1. Set the argument into SDH_CMD register. 

2. Set command into SDH_CTL register CMD_CODE bit. 

3. Set SDH_CTL register CO_EN bit to enable the command out. 

4. Polling SDH_CTL register CO_EN bit until it was cleared. 

 Get Response 

Get response from SD card, please follow the steps below: 

1. Set SDH_CTL register RI_EN bit to enable response in. 

2. Polling SDH_CTL register RI_EN bit until it was cleared. 

3. Check SDH_INTSTS register CRC7 bit. 

4. Get the response from SDH_RESP0 and SDH_RESP1 register. 

 Read SD Card 

SD card read access, please follow the steps below: 

1. Send CMD7 to enter transfer state. 

2. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS register 
SDDAT0 bit. Repeat step 2 until the SD card is ready. 

3. Set block size to SDH_BLEN register. Such as 0x1FF is for 512 bytes. 

4. Set the read starting sector address to SDH_CMD register. 

5. Set the data target address to SDH_DMASA register. 

6. Check the read sector count. If the count is greater than 255, user should separate it. Set the 
sector count to SDH_CTL register BLK_CNT bit. (255 is the limitation). 

7. Send CMD18 for multiple read. (Set 18 to SDH_CTL register CMD_CODE bit). 

8. Set SDH_CTL register CO_EN, RI_EN and DI_EN bit to enable command out, response in 
and data in.  

9. Polling DI_EN bit until it was cleared. Or waiting the interrupt (SDH_INTSTS register BLKD_IF 
bit). 

10. Check SDH_INTSTS register CRC7 and CRC16 bit. 

11. Send CMD12 to stop transfer. 

12. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS register 
SDDAT0 bit. Repeat step 12 until the SD card is ready.  

13. Send CMD7 to Idle state. 

 Write SD Card 

SD card write access, please follow the steps below: 

1. Send CMD7 to enter transfer state. 

2. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS register 
SDDAT0 bit. Repeat step 2 until the SD card is ready.  



 NUC980 

May 2, 2019  Page 227 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Set block size to SDH_BLEN register. Such as 0x1FF is for 512 bytes. 

4. Set the write starting sector address to SDH_CMD register. 

5. Set the data source address to SDH_DMASA register. 

6. Check the write sector count. If the count is greater than 255, user should separate it. Set the 
sector count to SDH_CTL register BLK_CNT bit. (255 is the limitation).  

7. Send CMD25 for multiple write. (Set 25 to SDH_CTL register CMD_CODE bit). 

8. Set SDH_CTL register CO_EN, RI_EN and DO_EN bit to enable command out, response in 
and data out.  

9. Polling DO_EN bit until it was cleared. Or waiting the interrupt (SDH_INTSTS register 
BLKD_IF bit).  

10. Check SDH_INTSTS register CRC_IF bit. If CRC error occurred, the state machine should 
software reset. (Set SDH_CTL register SW_RST bit) 

11. Send CMD12 to stop transfer. 

12. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS register 
SDDAT0 bit. Repeat step 12 until the SD card is ready.  

13. Send CMD7 to Idle state. 

 

  



 NUC980 

May 2, 2019  Page 228 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

24.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

SDH_BA = 0xB001_8000 

SDH_FB_n 

n = 0,1…31 
SDH_BA+0x000 + 0x4 * n R/W 

SD Host Embedded Buffer Word n 

n = 0,1…31 
0x0000_0000 

SDH_DMACTL SDH_BA+0x400 R/W SD Host DMA Control and Status Register 0x0000_0000 

SDH_DMASA SDH_BA+0x408 R/W SD Host DMA Transfer Starting Address Register 0x0000_0000 

SDH_DMABCNT SDH_BA+0x40C R SD Host DMA Transfer Byte Count Register 0x0000_0000 

SDH_DMAINTEN SDH_BA+0x410 R/W SD Host DMA Interrupt Enable Register 0x0000_0001 

SDH_DMAINTSTS SDH_BA+0x414 R/W SD Host DMA Interrupt Status Register 0x0000_0000 

SDH_GCTL SDH_BA + 0x800 R/W SD Host Global Control and Status Register 0x0000_0000 

SDH_GINTEN SDH_BA + 0x804 R/W SD Host Global Interrupt Control Register 0x0000_0001 

SDH_GINTSTS SDH_BA + 0x808 R/W SD Host Global Interrupt Status Register 0x0000_0000 

SDH_CTL SDH_BA + 0x820 R/W SD Host Control and Status Register 0x0101_0000 

SDH_CMD SDH_BA + 0x824 R/W SD Host Command Argument Register 0x0000_0000 

SDH_INTEN SDH_BA + 0x828 R/W SD Host Interrupt Enable Register 0x0000_0A00 

SDH_INTSTS SDH_BA + 0x82C R/W SD Host Interrupt Status Register 0x000X_008C 

SDH_RESP0 SDH_BA + 0x830 R SD Host Receiving Response Token Register 0 0x0000_0000 

SDH_RESP1 SDH_BA + 0x834 R SD Host Receiving Response Token Register 1 0x0000_0000 

SDH_BLEN SDH_BA + 0x838 R/W SD Host Block Length Register 0x0000_01FF 

SDH_TMOUT SDH_BA + 0x83C R/W SD Host Response/Data-in Time-out Register 0x0000_0000 

SDH_ECTL SDH_BA + 0x840 R/W SD Host Extend Control Register 0x0000_0003 

 



 NUC980 

May 2, 2019  Page 229 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

25 CRYPTOGRAPHIC ACCELERATOR 

25.1 Overview 

The Crypto (Cryptographic Accelerator) includes a secure pseudo random number generator (PRNG) 
core and supports AES, SHA/HMAC, ECC and RSA algorithms.  

The PRNG core supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation. 

The AES accelerator is an implementation fully compliant with the AES (Advance Encryption 
Standard) encryption and decryption algorithm. The AES accelerator supports ECB, CBC, CFB, OFB, 
CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode. 

ECC accelerator support ECC elliptic curve binary field GF(2m) multiplication and addition operations, 
and support prime field GF(p) module multiplication、division、addition and subtraction operations。

NUC980 ECC supports up to 571 bits ECC calculation. Support NIST P-192, P-224, P-256, P-384, P-
521, B-163, B-233, B-283, B-409, B-571, K-163, K-233, K-283, K-409, and K-571 elliptic curves. It 
also supports Koblitz secp192k1, secp224k1, and secp256k1 elliptic curves, and Brainpool P256r1, 
P384r1, and P512r1 elliptic curves. 

NUC980 RSA accelerator supports RSA modulus multiplication operation. It supports up to 2048 bits 
RSA. 

25.2 Features 

 PRNG 

– Supports 64 bits, 128 bits , 192 bits, and 256 bits random number generation 

 AES 

– Supports FIPS NIST 197 

– Supports SP800-38A and addendum 

– Supports 128, 192, and 256 bits key 

– Supports both encryption and decryption 

– Supports ECB, CBC, CFB, OFB , CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode 

 SHA 

– Supports FIPS NIST 180, 180-2 

– Supports SHA-160, SHA-224, SHA-256, SHA-384, and SHA-512 

 HMAC 

– Supports FIPS NIST 180, 180-2 

– Supports HMAC-SHA-160, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and 
HMAC-SHA-512 

 ECC 

– Supports both prime field GF(p) and binary filed GF(2m) 

– Supports NIST P-192, P-224, P-256, P-384, and P-521 

– Supports NIST B-163, B-233, B-283, B-409, and B-571 

– Supports NIST K-163, K-233, K-283, K-409, and K-571 

– Supports point multiplication, addition and doubling operations in GF(p) and GF(2m) 

– Supports modulus division, multiplication, addition and subtraction operations in GF(p) 



 NUC980 

May 2, 2019  Page 230 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 RSA 

– Supports both encryption and decryption 

– Supports up to 2048 bits 

  



 NUC980 

May 2, 2019  Page 231 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

25.3 Block Diagram 

AMBA

AHB_wrapper

AHB_arbiter

Control / status 

registers PRNG

AES

master

master

master

slave

FIFO

DMA

Ctrl

FSM
AES engine

HMAC
DMA Ctrl

FSM
HMAC engine

ECC

DMA
Ctrl

FSM
ECC engine

master

RSA

DMA
Ctrl

FSM
RSA engine

 

Figure 25.3-1 Cryptographic Accelerator Block Diagram 

 

The cryptographic accelerator includes a secure pseudo random number generator (PRNG) core and 
supports AES, SHA/HMAC, ECC, and RSA algorithms. The accelerator can be used in different data 
security applications, such as secure communications that need cryptographic protection and integrity. 

The PRNG core supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation. 

The AES accelerator is a fully compliant implementation of the AES (Advance Encryption Standard) 
encryption and decryption algorithm. The AES accelerator supports ECB, CBC, CFB, OFB, CTR, 
CBC-CS1, CBC-CS2, and CBC-CS3 mode. The AES accelerator provides the DMA function to reduce 
the CPU intervention, and supports three burst lengths, sixteen-words, eight-words, and four-words. 

The SHA/HMAC accelerator is a fully compliant implementation of the SHA-160, SHA-224, SHA-256, 
SHA-384, SHA-512, and corresponding HMAC algorithm. The SHA/HMAC accelerator also supports 
the DMA function to reduce the CPU intervention. It supports three burst lengths, sixteen-words, eight-
words, and four-words. 

The ECC accelerator is a fully compliant implementation of the prime field GF(p) and binary field 
GF(2m) algorithm. The prime field GF(p) supports NIST P-192, P-224, P-256, P-384 and P-521. The 
binary field GF(2m) supports NIST B-163, B-233, B-283, B-409, B-571 and NIST K-163, K-233, K-283, 
K-409 and K-571. 



 NUC980 

May 2, 2019  Page 232 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

The RSA accelerator is a fully compliant implementation of RSA cryptography with 1024-bit and 2048-
bit encryption/decryption. 

 

 Data Access 

The cryptographic accelerator supports the following features to enhance the performance: 

1. DMA mode: Once DMA source address register, destination address register, and byte count 
register are configured by CPU, moving data from and to accelerator is done by DMA logic 
totally. This mode can off-load the loading from the CPU. The cryptographic accelerator 
embeds four hardware DMA channels for AES engine, and one hardware DMA channel for 
SHA/HMAC engine. 

2. DMA Cascade mode: In the case that the data SRAM resource is tight, or another peripheral 
is scheduled to switch, the data source or sink needs an update, while the setting for the 
accelerator operation is planned to be kept. In this mode, software can update DMA source 
address register, destination address register, and byte count register during a cascade 
operation, without finishing the accelerator operation. 

3. Non-DMA mode: In the case that the input data is small in size, DMA mode is not preferred. 
This mode can reduce the processing time for the accelerator, since no DMA related register 
needs a configuration, and no latency in DMA logic is introduced. Input data was feeding to 
cryptographic engine via writing to data input register. 

4. Channel Expansion mode: In this mode, several virtual channels in one of four DMA 
channels are feasible in AES mode. The total channel number can exceed the limit of four 
DMA channels. The intermediate data from feedback registers (CRPT_AES_FDBCKx) should 
be stored temporarily in data SRAM. And switch to another configuration setting of accelerator 
operation that includes operational mode, encryption/decryption, key, key size, IV, and other 
parameters. Once switching back, the intermediate data from feedback registers should be 
written to initial vectors (CRPT_AES0_IVx) for the accelerator to continue the operation with 
the original configuration setting. Note that, in ECB mode, there is no need to move the 
intermediate data from feedback registers to IV. 

 

  



 NUC980 

May 2, 2019  Page 233 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

25.4 Functional Description 

 PRNG 

The PRNG block diagram is depicted below. The core supports 64 bits, 128 bits, 192 bits, and 256 bits 
random number generation configured by KEYSZ(CRPT_PRNG_CTL[3:2] ). 

P R NG_S TAR T

P R NG_S EED_R ELOAD

PRNG_SEED P RNG
PRNG0

~
PRNG7

P R NG_BUS Y

P R NG_KEY_S IZE

 

Figure 25.4-1 PRNG Block Diagram 

Program steps to get the pseudo random number are depicted below: 

1. Check BUSY(CRPT_PRNG_CTL[8]) until it comes to 0. 

2. Initialize PRNG parameters. Select key size by KEYSZ (CRPT_PRNG_CTL[3:2]), and write a 
random seed to CRPT_PRNG _SEED. Note that CRPT_PRNG_SEED should be initialized 
since it’s not initialized as the chip powers up. 

3. Write setting value to PRNG control register CRPT_PRNG_CTL. At the same, set 
START(CRPT_PRNG_CTL[0]) as 1 to trigger PRNG. 

4. Check BUSY(CRPT_PRNG_CTL[8]) until it comes to 0, or waits for the PRNG done interrupt 
(must enable the corresponding interrupt enable register). User can then get the output 
random numbers from CRPT_PRNG_KEY0 ~ CRPT_PRNG_KEY7 registers. 

5. User can repeat step 3~4 to get a sequence of random numbers. 

 AES 

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data 
established by the U.S. National Institute of Standards and Technology (NIST) in 2001. NUC980 AES 
accelerator is fully compliant with AES standards.  

Users can refer to the following steps to learn how to use NUC980 AES accelerator. 

 



 NUC980 

May 2, 2019  Page 234 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 AES DMA Mode Operating Flow 

1. Write 1 to AESIEN (CRPT_INTEN[0]) to enable AES interrupt. 

2. Select an available channel from four AES channels. 

3. Program AES key to registers CRPT_AES0_KEY0 ~ CRPT_AES0_KEY7 (where n is the 
selected channel number). If user wants to use MTP key as AES key, just write 1 to 
EXTKEY(CRPT_AES_CTL[4]) instead of writing CRPT_AES0_KEY0 ~ CRPT_AES0_KEY7 
registers. 

4. Program initial vectors to registers CRPT_AES0_IV0 ~ CRPT_AES0_IV3. If user selects AES 
ECB mode, there’s no need to write initial vectors. 

5. Write DMA source address to register CRPT_AES0_SADDR and write DMA destination 
address to register CRPT_AES0_DADDR respectively. If CPU data cache is enabled, the 
DMA address must be located in a non-cacheable address area. 

6. Write DMA byte count to register CRPT_AES0_CNT. 

7. Configure AES control register CRPT_AES_CTL for channel selection, encryption/decryption, 
operational mode, DMA mode, key size, and DMA input/output swap. 

8. Write input data to DMA source address. The byte count of data must be the same as selected 
DMA byte count. 

9. Write 1 to START(CRPT_AES_CTL[0]) to start AES encryption/decryption. 

10. Waits for the AES interrupt flag AESIF (CRPT_INTSTS[0]) be set. 

11. Read output data from DMA destination address. The byte count of output data is the same as 
selected DMA byte count. 

12. Repeat step 8 to step 11 until all data processed. 

 AES non-DMA Mode Operating Flow 

1. Write 1 to AESIEN (CRPT_INTEN[0]) to enable AES interrupt. 

2. Select an available channel from four AES channels. 

3. Program AES key to registers CRPT_AES0_KEY0 ~ CRPT_AES0_KEY7 (where n is the 
selected channel number). If user wants to use MTP key as AES key, just write 1 to 
EXTKEY(CRPT_AES_CTL[4]) instead of writing CRPT_AES0_KEY0 ~ CRPT_AES0_KEY7 
registers. 

4. Program initial vectors to registers CRPT_AES0_IV0 ~ CRPT_AES0_IV3. If user selects AES 
ECB mode, there’s no need to write initial vectors. 

5. Configure AES control register CRPT_AES_CTL for channel selection, encryption/decryption, 
operational mode, DMA mode, and key size. 

6. Write 1 to START(CRPT_AES_CTL[0]) to start AES encryption/decryption. 

7. If INBUFFULL(CRPT_AES_STS[9]) bit is 0, write an input data word to CRPT_AES_DATIN 
register. 

8. If OUTBUFEMPTY(CRPT_AES_STS[16]) bit is 0, read an output data word from 
CRPT_AES_DATOUT register. 

9. Repeat steps 7~8 until there’s 4 words read from CRPT_AES_DATOUT register.  

10. Write 1 to DMALAST(CRPT_AES_CTL[5]). It means the completion of an AES block.  

11. Repeat steps 7~10, until all encrypt/decrypt data are processed. 

 SHA 



 NUC980 

May 2, 2019  Page 235 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

The Secure Hash Algorithm is a family of cryptographic hash functions published by the National 
Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard 
(FIPS).  

Users can refer to the following steps to learn how to use NUC980 SHA accelerator. 

 SHA DMA Mode Operating Flow 

1. Write 1 to HMACIEN(CRPT_INTEN[24]) to enable SHA/HMAC interrupt. 

2. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine input/output 
data swap, DMA mode, and SHA operation mode. Clear HMACEN(CRPT_HMAC_CTL[4]) to 
select SHA mode. 

3. Program DMA source address to register CRPT_HMAC_SADDR. 

4. Program DMA byte count to register CRPT_HMAC_DMACNT. 

5. Write input data to DMA source address with selected DMA byte count. 

6. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption. 

7. Waits for the SHA interrupt flag HMACIF(CRPT_INTSTS[24]) be set. 

8. Read output digest (SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4, SHA224: 
CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, SHA256: CRPT_HMAC_DGST0 ~ 
CRPT_HMAC_DGST7, SHA384: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11, SHA512: 
CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15). 

 SHA non-DMA Mode Operating Flow 

1. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine input/output 
data swap, DMA mode, and SHA operation mode. Clear HMACEN(CRPT_HMAC_CTL[4]) to 
select SHA mode. 

2. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption. 

3. If it's the last input word, set DMALAST(CRPT_HMAC_CTL[5]). 

4. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption. 

5. Waits for the SHA data input request DATINREQ(CRPT_HMAC_STS[16]) be set. 

6. Write one word of input data to CRPT_HMAC_DATIN. 

7. Repeat step 2 to 5 until all input words are written into SHA engine. 

8. Waits for the BUSY (CRPT_HMAC_STS[0]) be cleared. 

9. Read output digest (SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4, SHA224: 
CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, SHA256: CRPT_HMAC_DGST0 ~ 
CRPT_HMAC_DGST7, SHA384: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11, SHA512: 
CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15). 

 ECC 

ECC（Elliptic Curve Cryptography）is a famous approach of public-key cryptosystems. It utilizes the 

algebraic cyclic group characters of elliptic curves over finite field to build cryptographic systems. All 
points of an elliptic curve will follow the formula of elliptic curve : y2≡x3+A*x+B (mod N) in GF(p) and 
y2+x*y≡x3+A*x2+B (mod N) in GF(2m). 

NIST published several elliptic curves:  P-192, P-224, P-256, P-384, P-521, B-163, B-233, B-283, B-
409, B571, K-163, K-233, K-283, K-409, and K571.  NUC980 ECC can pass ECC test vectors 
published on NIST official website.  

Using NU980 ECC accelerator, the base point and curve parameters of selected elliptic curve must be 
written to corresponding registers. Users can refer to the following steps to learn how to use NUC980 



 NUC980 

May 2, 2019  Page 236 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

ECC accelerator. 

 

 Using Prime Field Elliptic Curves 

To use prime field elliptic curves, the base point and curve parameters of selected elliptic curve must 
be written to corresponding registers:  

 Gx： CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 

 Gy： CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17 

 p：    CRPT_ECC_N_00 ~ CRPT_ECC_N_17 

 p-3： CRPT_ECC_A_00 ~ CRPT_ECC_A_17 

 b：    CRPT_ECC_B_00 ~ CRPT_ECC_B_17 

 key length： CURVEM(CRPT_ECC_CTL[31:22]) 

 

 Using Binary Field Elliptic Curves 

To use binary field elliptic curves, the base point and curve parameters of selected elliptic curve must 
be written to corresponding registers: 

 Gx： CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 

 Gy： CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17 

 P(t)：CRPT_ECC_N_00 ~ CRPT_ECC_N_17 

 a：    CRPT_ECC_A_00 ~ CRPT_ECC_A_17 

 b：    CRPT_ECC_B_00 ~ CRPT_ECC_B_17 

 key length： CURVEM(CRPT_ECC_CTL[31:22]) 

 Point Multiplication 

Using NUC980 ECC accelerator for elliptic curve point multiplication as the following steps: 

1. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers.  

2. Write the x and y coordinate of multiplied points to registers CRPT_ECC_X1_00 ~ 
CRPT_ECC_X1_17 and CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

3. Write the multiplier to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

4. Execute NUC980 ECC point multiplication operation. 

5. Get calculation output from register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

 Generate the Public Key 

Using NUC980 ECC accelerator to generate the public key as the following steps:  

1. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers. 

2. Write the private key to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

3. Execute NUC980 ECC point multiplication operation. 

4. Get the public key from register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 



 NUC980 

May 2, 2019  Page 237 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 Support ECC ECDH  

ECDH(Diffie–Hellman key exchange) is a famous key exchange protocol. It supports to establish a 
share secret over an insecure channel. Using NUC980 ECC accelerator to support ECDH secret 
generation as the following steps:  

1. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers. 

2. Write your own private key to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

3. Write the partner’s public key to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

4. Execute NUC980 ECC point multiplication operation. 

5. Get the secret from register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

 Support ECC ECDSA 

1. ECDSA (Elliptic Curve Digital Signature Algorithm) is a digital signature generation/verification 
algorithm based on ECC elliptic curve. Using NUC980 ECC to generate a digital signature as 
the following steps: 

2. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers. 

3. Select a random integer k and write it to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

4. Execute NUC980 ECC point multiplication operation. Keep output coordinate x in register 
CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. Clear register CRPT_ECC_Y1_00 ~ 
CRPT_ECC_Y1_17 to 0. 

5. Write n of the selected curve to register CRPT_ECC_N_00 ~ CRPT_ECC_N_17. 

6. Execute NUC980 ECC point multiplication addition operation. Get the calculation result r from 
register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

7. Write point (0,1) to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

8. Execute NUC980 ECC module division operation. Get the calculation result K-1 from register 
CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

9. Write r to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17, and write private key d to 
register CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

10. Execute NUC980 ECC module multiplication operation. 

11. Calculate the hash value e of messages to be transmitted. Write to register 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

12. Execute NUC980 ECC module addition operation. 

13. Write K-1  to register CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

14. Execute NUC980 ECC module multiplication operation. 

15. Get the calculation result s from register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

16. (r, s) is the generated digital signature. 

 Using NUC980 ECC to verify a digital signature as the following steps: 

1. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers. 

2. Write n of the selected curve to register CRPT_ECC_N_00 ~ CRPT_ECC_N_17. 



 NUC980 

May 2, 2019  Page 238 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

3. Write signature s to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. Write 0x1 to register 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

4. Execute NUC980 ECC module division operation. Get the calculation result w from register  
CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

5. Write the hash value e to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. Write w to 
register CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

6. Execute NUC980 ECC module multiplication operation.  Get the calculation result u1 from 
register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

7. Write r to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. Write  w to register 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

8. Execute NUC980 ECC module multiplication operation.  Get the calculation result u2 from 
register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

9. Write the base point and curve parameters of selected elliptic curve to the corresponding 
registers. 

10. Write  u1 to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

11. Execute NUC980 ECC point multiplication operation.  Get the calculation result u1 * G  from 
register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and CRPT_ECC_Y1_00 ~ 
CRPT_ECC_Y1_17. 

12. Write the public key to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17and 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

13. Write u2 to register CRPT_ECC_K_00 ~ CRPT_ECC_K_17. 

14. Execute NUC980 ECC point multiplication operation.  Get the calculation result u2 * Q  from 
register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and CRPT_ECC_Y1_00 ~ 
CRPT_ECC_Y1_17. 

15. Write u2 * Q to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and CRPT_ECC_Y1_00 ~ 
CRPT_ECC_Y1_17. 

16. Write  u1 * G to register CRPT_ECC_X2_00 ~ CRPT_ECC_X2_17 and CRPT_ECC_Y2_00 ~ 
CRPT_ECC_Y2_17. 

17. Execute NUC980 ECC point addition operation.  Get the calculation result (x’, y’) from register 
CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17 and CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

18. Write x’ to register CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17, and Write 0x0 to register 
CRPT_ECC_Y1_00 ~ CRPT_ECC_Y1_17. 

19. Execute NUC980 ECC module addition operation.  Get the calculation result X1 from register 
CRPT_ECC_X1_00 ~ CRPT_ECC_X1_17. 

20. If X1 is equal to r, the signature verification passed. 

 RSA 

RSA is a widely used public-key cryptosystems. In RSA, this asymmetry is based on the practical 
difficulty of the factorization of the product of two large prime numbers, the "factoring problem". The 
most time expensive calculation in RSA should be modulus exponentiation calculation. NUC980 RSA 
accelerator supports hardware accelerating of modulus exponentiation calculation.  

 Generate RSA Private Key and Public Key 

The operation flow of RSA key generation as the followings: 

1. Choose two distinct huge prime numbers p and q. Calculate p * q to obtain N. 



 NUC980 

May 2, 2019  Page 239 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

2. Calculate (p – 1) * (q – 1) to obtain r。 

3. Choose an integer E < r such that E and r are coprime. 

4. Determine a d such that d is the modular multiplicative inverse of E. 

5. Destroy p and q. 

 

As a result, (N, E) is the RSA public key and (N, d) is the RSA private key. 

 Montgomery domain constant 

Using NUC980 RSA accelerator to encrypt/decrypt messages, NUC980 RSA executes ME % N or Md 
% N calculation. N, E and d are obtained in the process of RSA key generation. M represents the 
messages to be encrypted/decrypted. 

In addtion to be given necessary M, E(d) and N, NUC980 RSA accelerator requires the constant of 
Montgomery domain. The constant of Montgomery domain can be obtained by formula  C = 
2(key_length+2)*2 % N. It requires software to caculate it and write to NUC980 RSA register. The 
calculation of C is very time expensive. However, once a C is obtained, there’s no need to calculate in 
the next time used unless N was changed. 

 RSA Encryption 

The operating flow of using RSA public key to encrypt messages: 

1. Write N to register CRPT_RSA_N_00 ~ CRPT_RSA_N_63. 

2. Calculate C, and write C to register CRPT_RSA_C_00 ~ CRPT_RSA_C_63. 

3. Write E to register CRPT_RSA_E_00 ~ CRPT_RSA_E_63. 

4. Write the message to be encrypted to register CRPT_RSA_M_00 ~ CRPT_RSA_M_63. 

5. Start NUC980 RSA modulus exponentiation calculation. 

6. Get the encrypted messages from register CRPT_RSA_M_00 ~ CRPT_RSA_M_63. 

 RSA Decryption 

The operating flow of using RSA private key to decrypt messages: 

1. Write N to register CRPT_RSA_N_00 ~ CRPT_RSA_N_63. 

2. Calculate C, and write C to register CRPT_RSA_C_00 ~ CRPT_RSA_C_63. 

3. Write d to register CRPT_RSA_E_00 ~ CRPT_RSA_E_63. 

4. Write the message to be decrypted to register CRPT_RSA_M_00 ~ CRPT_RSA_M_63. 

5. Start NUC980 RSA modulus exponentiation calculation. 

6. Get the decrypted messages from register CRPT_RSA_M_00 ~ CRPT_RSA_M_63. 

  



 NUC980 

May 2, 2019  Page 240 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

25.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

CRYP Base Address: 

CRYP_BA = 0xB000_C000 

CRPT_INTEN CRYP_BA+0x000 R/W Crypto Interrupt Enable Control Register 0x0000_0000 

CRPT_INTSTS CRYP_BA+0x004 R/W Crypto Interrupt Flag 0x0000_0000 

CRPT_PRNG_CTL CRYP_BA+0x008 R/W PRNG Control Register 0x0000_0000 

CRPT_PRNG_SEED CRYP_BA+0x00C W Seed for PRNG Undefined 

CRPT_PRNG_KEY0 CRYP_BA+0x010 R PRNG Generated Key0 Undefined 

CRPT_PRNG_KEY1 CRYP_BA+0x014 R PRNG Generated Key1 Undefined 

CRPT_PRNG_KEY2 CRYP_BA+0x018 R PRNG Generated Key2 Undefined 

CRPT_PRNG_KEY3 CRYP_BA+0x01C R PRNG Generated Key3 Undefined 

CRPT_PRNG_KEY4 CRYP_BA+0x020 R PRNG Generated Key4 Undefined 

CRPT_PRNG_KEY5 CRYP_BA+0x024 R PRNG Generated Key5 Undefined 

CRPT_PRNG_KEY6 CRYP_BA+0x028 R PRNG Generated Key6 Undefined 

CRPT_PRNG_KEY7 CRYP_BA+0x02C R PRNG Generated Key7 Undefined 

CRPT_AES_FDBCK0 
CRYP_BA+0x050 R AES Engine Output Feedback Data After 

Cryptographic Operation 
0x0000_0000 

CRPT_AES_FDBCK1 
CRYP_BA+0x054 R AES Engine Output Feedback Data After 

Cryptographic Operation 
0x0000_0000 

CRPT_AES_FDBCK2 
CRYP_BA+0x058 

R AES Engine Output Feedback Data After 
Cryptographic Operation 

0x0000_0000 

CRPT_AES_FDBCK3 
CRYP_BA+0x05C R AES Engine Output Feedback Data After 

Cryptographic Operation 
0x0000_0000 

CRPT_AES_CTL CRYP_BA+0x100 R/W AES Control Register  0x0000_0000 

CRPT_AES_STS CRYP_BA+0x104 R AES Engine Flag 0x0001_0100 

CRPT_AES_DATIN CRYP_BA+0x108 R/W AES Engine Data Input Port Register 0x0000_0000 

CRPT_AES_DATOUT CRYP_BA+0x10C R AES Engine Data Output Port Register 0x0000_0000 

CRPT_AES0_KEY0 CRYP_BA+0x110 R/W AES Key Word 0 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY1 CRYP_BA+0x114 R/W AES Key Word 1 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY2 CRYP_BA+0x118 R/W AES Key Word 2 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY3 CRYP_BA+0x11C R/W AES Key Word 3 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY4 CRYP_BA+0x120 R/W AES Key Word 4 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY5 CRYP_BA+0x124 R/W AES Key Word 5 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY6 CRYP_BA+0x128 R/W AES Key Word 6 Register for Channel 0 0x0000_0000 

CRPT_AES0_KEY7 CRYP_BA+0x12C R/W AES Key Word 7 Register for Channel 0 0x0000_0000 



 NUC980 

May 2, 2019  Page 241 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_AES0_IV0 CRYP_BA+0x130 R/W AES Initial Vector Word 0 Register for Channel 0    0x0000_0000 

CRPT_AES0_IV1 CRYP_BA+0x134 R/W AES Initial Vector Word 1 Register for Channel 0 0x0000_0000 

CRPT_AES0_IV2 CRYP_BA+0x138 R/W AES Initial Vector Word 2 Register for Channel 0 0x0000_0000 

CRPT_AES0_IV3 CRYP_BA+0x13C R/W AES Initial Vector Word 3 Register for Channel 0 0x0000_0000 

CRPT_AES0_SADDR CRYP_BA+0x140 R/W AES DMA Source Address Register for Channel 0 0x0000_0000 

CRPT_AES0_DADDR 
CRYP_BA+0x144 

R/W AES DMA Destination Address Register for Channel 
0 

0x0000_0000 

CRPT_AES0_CNT CRYP_BA+0x148 R/W AES Byte Count Register for Channel 0 0x0000_0000 

CRPT_HMAC_CTL CRYP_BA+0x300 R/W SHA/HMAC Control Register  0x0000_0000 

CRPT_HMAC_STS CRYP_BA+0x304 R SHA/HMAC Status Flag 0x0000_0000 

CRPT_HMAC_DGST0 CRYP_BA+0x308 R SHA/HMAC Digest Message 0 0x0000_0000 

CRPT_HMAC_DGST1 CRYP_BA+0x30C R SHA/HMAC Digest Message 1 0x0000_0000 

CRPT_HMAC_DGST2 CRYP_BA+0x310 R SHA/HMAC Digest Message 2 0x0000_0000 

CRPT_HMAC_DGST3 CRYP_BA+0x314 R SHA/HMAC Digest Message 3 0x0000_0000 

CRPT_HMAC_DGST4 CRYP_BA+0x318 R SHA/HMAC Digest Message 4 0x0000_0000 

CRPT_HMAC_DGST5 CRYP_BA+0x31C R SHA/HMAC Digest Message 5 0x0000_0000 

CRPT_HMAC_DGST6 CRYP_BA+0x320 R SHA/HMAC Digest Message 6 0x0000_0000 

CRPT_HMAC_DGST7 CRYP_BA+0x324 R SHA/HMAC Digest Message 7 0x0000_0000 

CRPT_HMAC_DGST8 CRYP_BA+0x328 R SHA/HMAC Digest Message 8 0x0000_0000 

CRPT_HMAC_DGST9 CRYP_BA+0x32C R SHA/HMAC Digest Message 9 0x0000_0000 

CRPT_HMAC_DGST10 CRYP_BA+0x330 R SHA/HMAC Digest Message 10 0x0000_0000 

CRPT_HMAC_DGST11 CRYP_BA+0x334 R SHA/HMAC Digest Message 11 0x0000_0000 

CRPT_HMAC_DGST12 CRYP_BA+0x338 R SHA/HMAC Digest Message 12 0x0000_0000 

CRPT_HMAC_DGST13 CRYP_BA+0x33C R SHA/HMAC Digest Message 13 0x0000_0000 

CRPT_HMAC_DGST14 CRYP_BA+0x340 R SHA/HMAC Digest Message 14 0x0000_0000 

CRPT_HMAC_DGST15 CRYP_BA+0x344 R SHA/HMAC Digest Message 15 0x0000_0000 

CRPT_HMAC_KEYCNT CRYP_BA+0x348 R/W SHA/HMAC Key Byte Count Register 0x0000_0000 

CRPT_HMAC_SADDR CRYP_BA+0x34C R/W SHA/HMAC DMA Source Address Register 0x0000_0000 

CRPT_HMAC_DMACNT CRYP_BA+0x350 R/W SHA/HMAC Byte Count Register 0x0000_0000 

CRPT_HMAC_DATIN 
CRYP_BA+0x354 R/W SHA/HMAC Engine Non-dMA Mode Data Input Port 

Register 
0x0000_0000 

CRPT_ECC_CTL CRYP_BA+0x800 R/W ECC Control Register 0x0000_0000 

CRPT_ECC_STS CRYP_BA+0x804 R ECC Status Register 0x0000_0000 

CRPT_ECC_X1_00 CRYP_BA+0x808 R/W ECC the X-coordinate Word0 of the First Point   0x0000_0000 

CRPT_ECC_X1_01 CRYP_BA+0x80C R/W ECC the X-coordinate Word1 of the First Point  0x0000_0000 

CRPT_ECC_X1_02 CRYP_BA+0x810 R/W ECC the X-coordinate Word2 of the First Point  0x0000_0000 



 NUC980 

May 2, 2019  Page 242 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_ECC_X1_03 CRYP_BA+0x814 R/W ECC the X-coordinate Word3 of the First Point  0x0000_0000 

CRPT_ECC_X1_04 CRYP_BA+0x818 R/W ECC the X-coordinate Word4 of the First Point  0x0000_0000 

CRPT_ECC_X1_05 CRYP_BA+0x81C R/W ECC the X-coordinate Word5 of the First Point  0x0000_0000 

CRPT_ECC_X1_06 CRYP_BA+0x820 R/W ECC the X-coordinate Word6 of the First Point  0x0000_0000 

CRPT_ECC_X1_07 CRYP_BA+0x824 R/W ECC the X-coordinate Word7 of the First Point  0x0000_0000 

CRPT_ECC_X1_08 CRYP_BA+0x828 R/W ECC the X-coordinate Word8 of the First Point  0x0000_0000 

CRPT_ECC_X1_09 CRYP_BA+0x82C R/W ECC the X-coordinate Word9 of the First Point  0x0000_0000 

CRPT_ECC_X1_10 CRYP_BA+0x830 R/W ECC the X-coordinate Word10 of the First Point  0x0000_0000 

CRPT_ECC_X1_11 CRYP_BA+0x834 R/W ECC the X-coordinate Word11 of the First Point  0x0000_0000 

CRPT_ECC_X1_12 CRYP_BA+0x838 R/W ECC the X-coordinate Word12 of the First Point  0x0000_0000 

CRPT_ECC_X1_13 CRYP_BA+0x83C R/W ECC the X-coordinate Word13 of the First Point  0x0000_0000 

CRPT_ECC_X1_14 CRYP_BA+0x840 R/W ECC the X-coordinate Word14 of the First Point  0x0000_0000 

CRPT_ECC_X1_15 CRYP_BA+0x844 R/W ECC the X-coordinate Word15 of the First Point  0x0000_0000 

CRPT_ECC_X1_16 CRYP_BA+0x848 R/W ECC the X-coordinate Word16 of the First Point  0x0000_0000 

CRPT_ECC_X1_17 CRYP_BA+0x84C R/W ECC the X-coordinate Word17 of the First Point  0x0000_0000 

CRPT_ECC_Y1_00 CRYP_BA+0x850 R/W ECC the Y-coordinate Word0 of the First Point  0x0000_0000 

CRPT_ECC_Y1_01 CRYP_BA+0x854 R/W ECC the Y-coordinate Word1 of the First Point  0x0000_0000 

CRPT_ECC_Y1_02 CRYP_BA+0x858 R/W ECC the Y-coordinate Word2 of the First Point  0x0000_0000 

CRPT_ECC_Y1_03 CRYP_BA+0x85C R/W ECC the Y-coordinate Word3 of the First Point  0x0000_0000 

CRPT_ECC_Y1_04 CRYP_BA+0x860 R/W ECC the Y-coordinate Word4 of the First Point  0x0000_0000 

CRPT_ECC_Y1_05 CRYP_BA+0x864 R/W ECC the Y-coordinate Word5 of the First Point  0x0000_0000 

CRPT_ECC_Y1_06 CRYP_BA+0x868 R/W ECC the Y-coordinate Word6 of the First Point  0x0000_0000 

CRPT_ECC_Y1_07 CRYP_BA+0x86C R/W ECC the Y-coordinate Word7 of the First Point  0x0000_0000 

CRPT_ECC_Y1_08 CRYP_BA+0x870 R/W ECC the Y-coordinate Word8 of the First Point  0x0000_0000 

CRPT_ECC_Y1_09 CRYP_BA+0x874 R/W ECC the Y-coordinate Word9 of the First Point  0x0000_0000 

CRPT_ECC_Y1_10 CRYP_BA+0x878 R/W ECC the Y-coordinate Word10 of the First Point  0x0000_0000 

CRPT_ECC_Y1_11 CRYP_BA+0x87C R/W ECC the Y-coordinate Word11 of the First Point  0x0000_0000 

CRPT_ECC_Y1_12 CRYP_BA+0x880 R/W ECC the Y-coordinate Word12 of the First Point  0x0000_0000 

CRPT_ECC_Y1_13 CRYP_BA+0x884 R/W ECC the Y-coordinate Word13 of the First Point  0x0000_0000 

CRPT_ECC_Y1_14 CRYP_BA+0x888 R/W ECC the Y-coordinate Word14 of the First Point  0x0000_0000 

CRPT_ECC_Y1_15 CRYP_BA+0x88C R/W ECC the Y-coordinate Word15 of the First Point  0x0000_0000 

CRPT_ECC_Y1_16 CRYP_BA+0x890 R/W ECC the Y-coordinate Word16 of the First Point  0x0000_0000 

CRPT_ECC_Y1_17 CRYP_BA+0x894 R/W ECC the Y-coordinate Word17 of the First Point  0x0000_0000 

CRPT_ECC_X2_00 CRYP_BA+0x898 R/W ECC the X-coordinate Word0 of the Second Point  0x0000_0000 

CRPT_ECC_X2_01 CRYP_BA+0x89C R/W ECC the X-coordinate Word1 of the Second Point  0x0000_0000 



 NUC980 

May 2, 2019  Page 243 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_ECC_X2_02 CRYP_BA+0x8A0 R/W ECC the X-coordinate Word2 of the Second Point  0x0000_0000 

CRPT_ECC_X2_03 CRYP_BA+0x8A4 R/W ECC the X-coordinate Word3 of the Second Point  0x0000_0000 

CRPT_ECC_X2_04 CRYP_BA+0x8A8 R/W ECC the X-coordinate Word4 of the Second Point  0x0000_0000 

CRPT_ECC_X2_05 CRYP_BA+0x8AC R/W ECC the X-coordinate Word5 of the Second Point  0x0000_0000 

CRPT_ECC_X2_06 CRYP_BA+0x8B0 R/W ECC the X-coordinate Word6 of the Second Point  0x0000_0000 

CRPT_ECC_X2_07 CRYP_BA+0x8B4 R/W ECC the X-coordinate Word7 of the Second Point  0x0000_0000 

CRPT_ECC_X2_08 CRYP_BA+0x8B8 R/W ECC the X-coordinate Word8 of the Second Point  0x0000_0000 

CRPT_ECC_X2_09 CRYP_BA+0x8BC R/W ECC the X-coordinate Word9 of the Second Point  0x0000_0000 

CRPT_ECC_X2_10 CRYP_BA+0x8C0 R/W ECC the X-coordinate Word10 of the Second Point  0x0000_0000 

CRPT_ECC_X2_11 CRYP_BA+0x8C4 R/W ECC the X-coordinate Word11 of the Second Point  0x0000_0000 

CRPT_ECC_X2_12 CRYP_BA+0x8C8 R/W ECC the X-coordinate Word12 of the Second Point  0x0000_0000 

CRPT_ECC_X2_13 CRYP_BA+0x8CC R/W ECC the X-coordinate Word13 of the Second Point  0x0000_0000 

CRPT_ECC_X2_14 CRYP_BA+0x8D0 R/W ECC the X-coordinate Word14 of the Second Point  0x0000_0000 

CRPT_ECC_X2_15 CRYP_BA+0x8D4 R/W ECC the X-coordinate Word15 of the Second Point  0x0000_0000 

CRPT_ECC_X2_16 CRYP_BA+0x8D8 R/W ECC the X-coordinate Word16 of the Second Point  0x0000_0000 

CRPT_ECC_X2_17 CRYP_BA+0x8DC R/W ECC the X-coordinate Word17 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_00 CRYP_BA+0x8E0 R/W ECC the Y-coordinate Word0 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_01 CRYP_BA+0x8E4 R/W ECC the Y-coordinate Word1 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_02 CRYP_BA+0x8E8 R/W ECC the Y-coordinate Word2 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_03 CRYP_BA+0x8EC R/W ECC the Y-coordinate Word3 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_04 CRYP_BA+0x8F0 R/W ECC the Y-coordinate Word4 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_05 CRYP_BA+0x8F4 R/W ECC the Y-coordinate Word5 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_06 CRYP_BA+0x8F8 R/W ECC the Y-coordinate Word6 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_07 CRYP_BA+0x8FC R/W ECC the Y-coordinate Word7 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_08 CRYP_BA+0x900 R/W ECC the Y-coordinate Word8 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_09 CRYP_BA+0x904 R/W ECC the Y-coordinate Word9 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_10 CRYP_BA+0x908 R/W ECC the Y-coordinate Word10 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_11 CRYP_BA+0x90C R/W ECC the Y-coordinate Word11 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_12 CRYP_BA+0x910 R/W ECC the Y-coordinate Word12 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_13 CRYP_BA+0x914 R/W ECC the Y-coordinate Word13 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_14 CRYP_BA+0x918 R/W ECC the Y-coordinate Word14 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_15 CRYP_BA+0x91C R/W ECC the Y-coordinate Word15 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_16 CRYP_BA+0x920 R/W ECC the Y-coordinate Word16 of the Second Point  0x0000_0000 

CRPT_ECC_Y2_17 CRYP_BA+0x924 R/W ECC the Y-coordinate Word17 of the Second Point  0x0000_0000 

CRPT_ECC_A_00 CRYP_BA+0x928 R/W ECC the Parameter CURVEA Word0 of Elliptic Curve 0x0000_0000 



 NUC980 

May 2, 2019  Page 244 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_ECC_A_01 CRYP_BA+0x92C R/W ECC the Parameter CURVEA Word1 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_02 CRYP_BA+0x930 R/W ECC the Parameter CURVEA Word2 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_03 CRYP_BA+0x934 R/W ECC the Parameter CURVEA Word3 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_04 CRYP_BA+0x938 R/W ECC the Parameter CURVEA Word4 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_05 CRYP_BA+0x93C R/W ECC the Parameter CURVEA Word5 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_06 CRYP_BA+0x940 R/W ECC the Parameter CURVEA Word6 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_07 CRYP_BA+0x944 R/W ECC the Parameter CURVEA Word7 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_08 CRYP_BA+0x948 R/W ECC the Parameter CURVEA Word8 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_09 CRYP_BA+0x94C R/W ECC the Parameter CURVEA Word9 of Elliptic Curve 0x0000_0000 

CRPT_ECC_A_10 
CRYP_BA+0x950 

R/W ECC the Parameter CURVEA Word10 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_11 
CRYP_BA+0x954 

R/W ECC the Parameter CURVEA Word11 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_12 
CRYP_BA+0x958 

R/W ECC the Parameter CURVEA Word12 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_13 
CRYP_BA+0x95C 

R/W ECC the Parameter CURVEA Word13 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_14 
CRYP_BA+0x960 

R/W ECC the Parameter CURVEA Word14 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_15 
CRYP_BA+0x964 

R/W ECC the Parameter CURVEA Word15 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_16 
CRYP_BA+0x968 

R/W ECC the Parameter CURVEA Word16 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_A_17 
CRYP_BA+0x96C 

R/W ECC the Parameter CURVEA Word17 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_00 CRYP_BA+0x970 R/W ECC the Parameter CURVEB Word0 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_01 CRYP_BA+0x974 R/W ECC the Parameter CURVEB Word1 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_02 CRYP_BA+0x978 R/W ECC the Parameter CURVEB Word2 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_03 CRYP_BA+0x97C R/W ECC the Parameter CURVEB Word3 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_04 CRYP_BA+0x980 R/W ECC the Parameter CURVEB Word4 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_05 CRYP_BA+0x984 R/W ECC the Parameter CURVEB Word5 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_06 CRYP_BA+0x988 R/W ECC the Parameter CURVEB Word6 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_07 CRYP_BA+0x98C R/W ECC the Parameter CURVEB Word7 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_08 CRYP_BA+0x990 R/W ECC the Parameter CURVEB Word8 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_09 CRYP_BA+0x994 R/W ECC the Parameter CURVEB Word9 of Elliptic Curve 0x0000_0000 

CRPT_ECC_B_10 
CRYP_BA+0x998 

R/W ECC the Parameter CURVEB Word10 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_11 
CRYP_BA+0x99C 

R/W ECC the Parameter CURVEB Word11 of Elliptic 
Curve 

0x0000_0000 



 NUC980 

May 2, 2019  Page 245 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_ECC_B_12 
CRYP_BA+0x9A0 

R/W ECC the Parameter CURVEB Word12 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_13 
CRYP_BA+0x9A4 

R/W ECC the Parameter CURVEB Word13 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_14 
CRYP_BA+0x9A8 

R/W ECC the Parameter CURVEB Word14 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_15 
CRYP_BA+0x9AC 

R/W ECC the Parameter CURVEB Word15 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_16 
CRYP_BA+0x9B0 

R/W ECC the Parameter CURVEB Word16 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_B_17 
CRYP_BA+0x9B4 

R/W ECC the Parameter CURVEB Word17 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_00 CRYP_BA+0x9B8 R/W ECC the Parameter CURVEN Word0 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_01 CRYP_BA+0x9BC R/W ECC the Parameter CURVEN Word1 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_02 CRYP_BA+0x9C0 R/W ECC the Parameter CURVEN Word2 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_03 CRYP_BA+0x9C4 R/W ECC the Parameter CURVEN Word3 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_04 CRYP_BA+0x9C8 R/W ECC the Parameter CURVEN Word4 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_05 CRYP_BA+0x9CC R/W ECC the Parameter CURVEN Word5 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_06 CRYP_BA+0x9D0 R/W ECC the Parameter CURVEN Word6 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_07 CRYP_BA+0x9D4 R/W ECC the Parameter CURVEN Word7 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_08 CRYP_BA+0x9D8 R/W ECC the Parameter CURVEN Word8 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_09 CRYP_BA+0x9DC R/W ECC the Parameter CURVEN Word9 of Elliptic Curve 0x0000_0000 

CRPT_ECC_N_10 
CRYP_BA+0x9E0 

R/W ECC the Parameter CURVEN Word10 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_11 
CRYP_BA+0x9E4 

R/W ECC the Parameter CURVEN Word11 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_12 
CRYP_BA+0x9E8 

R/W ECC the Parameter CURVEN Word12 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_13 
CRYP_BA+0x9EC 

R/W ECC the Parameter CURVEN Word13 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_14 
CRYP_BA+0x9F0 

R/W ECC the Parameter CURVEN Word14 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_15 
CRYP_BA+0x9F4 

R/W ECC the Parameter CURVEN Word15 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_16 
CRYP_BA+0x9F8 

R/W ECC the Parameter CURVEN Word16 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_N_17 
CRYP_BA+0x9FC 

R/W ECC the Parameter CURVEN Word17 of Elliptic 
Curve 

0x0000_0000 

CRPT_ECC_K_00 
CRYP_BA+0xA00 

W ECC the Scalar SCALARK Word0 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_01 
CRYP_BA+0xA04 

W ECC the Scalar SCALARK Word1 of Point 
Multiplication 

0x0000_0000 



 NUC980 

May 2, 2019  Page 246 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_ECC_K_02 
CRYP_BA+0xA08 

W ECC the Scalar SCALARK Word2 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_03 
CRYP_BA+0xA0C 

W ECC the Scalar SCALARK Word3 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_04 
CRYP_BA+0xA10 

W ECC the Scalar SCALARK Word4 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_05 
CRYP_BA+0xA14 

W ECC the Scalar SCALARK Word5 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_06 
CRYP_BA+0xA18 

W ECC the Scalar SCALARK Word6 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_07 
CRYP_BA+0xA1C 

W ECC the Scalar SCALARK Word7 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_08 
CRYP_BA+0xA20 

W ECC the Scalar SCALARK Word8 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_09 
CRYP_BA+0xA24 

W ECC the Scalar SCALARK Word9 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_10 
CRYP_BA+0xA28 

W ECC the Scalar SCALARK Word10 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_11 
CRYP_BA+0xA2C 

W ECC the Scalar SCALARK Word11 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_12 
CRYP_BA+0xA30 

W ECC the Scalar SCALARK Word12 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_13 
CRYP_BA+0xA34 

W ECC the Scalar SCALARK Word13 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_14 
CRYP_BA+0xA38 

W ECC the Scalar SCALARK Word14 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_15 
CRYP_BA+0xA3C 

W ECC the Scalar SCALARK Word15 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_16 
CRYP_BA+0xA40 

W ECC the Scalar SCALARK Word16 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_K_17 
CRYP_BA+0xA44 

W ECC the Scalar SCALARK Word17 of Point 
Multiplication 

0x0000_0000 

CRPT_ECC_SADDR CRYP_BA+0xA48 R/W ECC DMA Source Address Register 0x0000_0000 

CRPT_ECC_DADDR CRYP_BA+0xA4C R/W ECC DMA Destination Address Register 0x0000_0000 

CRPT_ECC_STARTREG CRYP_BA+0xA50 R/W ECC Starting Address of Updated Registers 0x0000_0000 

CRPT_ECC_WORDCNT CRYP_BA+0xA54 R/W ECC DMA Word Count 0x0000_0000 

CRPT_RSA_CTL CRYP_BA+0x1000 R/W RSA Control Register 0x0000_0000 

CRPT_RSA_STS CRYP_BA+0x1004 R RSA Status Register 0x0000_0000 

CRPT_RSA_M_i 

i=0,1..63 

CRYP_BA+0x1008+
0x4*i  

R/W RSA the Base of Exponentiation Word i 0x0000_0000 

CRPT_RSA_E_i 

i=0,1..63 

CRYP_BA+0x1208+
0x4*i  

W RSA the Exponent of Exponentiation Word i 0x0000_0000 



 NUC980 

May 2, 2019  Page 247 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

CRPT_RSA_N_i 

i=0,1..63 

CRYP_BA+0x1408+
0x4*i 

R/W RSA the Base of Modulus Operation Word i 0x0000_0000 

CRPT_RSA_C_i 

i=0,1..63 

CRYP_BA+0x1608+
0x4*i 

R/W RSA the Constant Value of Montgomery Domain 
Word i 

0x0000_0000 

CRPT_RSA_SADDR CRYP_BA+0x1808 R/W RSA DMA Source Address Register 0x0000_0000 

CRPT_RSA_DADDR CRYP_BA+0x180C R/W RSA DMA Destination Address Register 0x0000_0000 

CRPT_RSA_STARTREG CRYP_BA+0x1810 R/W RSA Starting Address of Updated Registers 0x0000_0000 

CRPT_RSA_WORDCNT CRYP_BA+0x1814 R/W RSA DMA Word Count 0x0000_0000 

  



 NUC980 

May 2, 2019  Page 248 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

26 CAPTURE SENSOR INTERFACE CONTROLLER 

26.1 Overview 

NUC980 series has two CAP controls. The Image Capture Interface is designed to capture image data 
from a sensor. After capturing or fetching image data, it will process the image data, and then FIFO 
output them into frame buffer. 

26.2 Features 

 Supports 2 CAP controller, CAP0 and CAP1 

 8-bit RGB565 sensor 

 8-bit YUV422 sensor 

 Supports CCIR601 YCbCr color range scale to full YUV color range 

 Supports 4 packaging format for packet data output: YUYV, Y only, RGB565, RGB555 

 Supports YUV422 planar data output 

 Supports the CROP function to crop input image to the required size for digital 
application. 

 Supports the down scaling function to scale input image to the required size for digital 
application. 

 Supports frame rate control 

 Supports field detection and even/odd field skip mechanism 

 Supports packet output dual buffer control through hardware buffer controller 

 Supports negative/sepia/posterization color effect 

 Supports two independent capture interfaces 

26.3 Block Diagram 

RGB 

To 

YUV

Color 

Effect

Sensor In Frame 

Rate 

Converter

Sensor Interface 

Croping

Packet 

Scaling 

Down

Planar 

Scaling 

Down

Motion 

Estimation

Package OFIFO DRAM

 Figure 26.3-1 Capture Sensor Interface Controller Block Diagram 

 

  



 NUC980 

May 2, 2019  Page 249 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

26.4 Functional Description 

 Basic Configuration 

The CAP0 peripheral clock can be enabled in CAP0(HCLKEN1[26]) and SENSOR(HCLKEN[27]). The 
CAP0 engine clock source is selected by SENSOR0_S (CLKDIV3[23:16]) and CAP0 engine clock 
divider is determined by SENSOR0_N (CLKDIV3[27:24]). 

The CAP1 peripheral clock can be enabled in CAP1(HCLKEN1[31]) and SENSOR(HCLKEN[27]). The 
CAP1 engine clock source is selected by SENSOR1_S (CLKDIV2[23:16]) and CAP1 engine clock 
divider is determined by SENSOR1_N (CLKDIV2[27:24]).  

 Image Capture Flow Chart 

Receive data format and format 
order

INFMT(CAP_PAR[0])
INDATORD(CAP_PAR[3:2])

Output data to memory format
OUTFMT(CAP_PAR[5:4])

Color effect processing
COLCORCTL(CAP_PAR[12:11])

Scaling frame rate
FRM(CAP_FRCTL[5:0])
FRN(CAP_FRCTL[13:8])

Cropping window starting 
address

CWSADDRH(CAP_CWSP[11:0])
CWSADDRV(CAP_CWSP[26:16])

Cropping window size
CWH(CAP_CWS[11:0])

CWW(CAP_CWS[26:16])

Next

Sensor in
Next

Packet scaling down
PKTDSVNL(CAP_PKTDSL[31:24])
PKTDSVML(CAP_PKTDSL[23:16])
PKTDSHNL(CAP_PKTDSL[15:8])
PKTDSHML(CAP_PKTDSL[7:0])

PKTDSVNH(CAP_PKTDSH[31:24])
PKTDSVMH(CAP_PKTDSH[23:16])
PKTDSHNH(CAP_PKTDSH[15:8])
PKTDSHMH(CAP_PKTDSH[7:0])

Planar scaling down
PLNDSVNL(CAP_PLNSL[31:24])
PLNDSVML(CAP_PLNSL[23:16])
PLNDSHNL(CAP_PLNSL[15:8])
PLNDSHML(CAP_PLNSL[7:0])

PLNDSVNLH(CAP_PLNSM[31:24])
PLNDSVMH(CAP_PLNSM[23:16])
PLNDSHNH(CAP_PLNSM[15:8])
PLNDSHMH(CAP_PLNSM[7:0])

Packet Planar

Packet output pixel stride
PKTSTRIDE((CAP_STRIDE(13:0))

Planar  output pixel stride
PLNSTRIDE((CAP_STRIDE(29:16)

)

Motion detection
MD, MDADDR and MDYADDR 

registers

Packet output enable
PLKEN(CAP_CTL[5])

Image capture interface enable
CAPEN((CAP_CTL[0]))

Planar output enable
PLNEN(CAP_CTL[6])

 

Figure 26.4-1 Image Capture Flow 

 Polarity and Input Data Order 

Sensor uses three control pins to notify the Video-In engine for a new frame, a new horizontal line or a 
new pixel. These pins are VSYNC, HSYNC and PCLK respectively. The polarity of VSYNC and 
HSYNC define positive or negative level that is the synchronization period. In addition, rising or falling 
edge of PCLK latches the image data. The following figures illustrate vertical synchronization polarity 
in high horizontal synchronization polarity, in high and rising edge latch data. 



 NUC980 

May 2, 2019  Page 250 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

V-Sync

H-Sync

Pixel
Data

H-Sync

Pixel
Data

Pixel
Clock

Invalid data Valid data

 

Figure 26.4-2 Control Signal Polarity 

 Sensor Data Input Order 

Input data order may be U0Y0VY1, Y0U0Y1V0, V0Y0U0Y1 or Y0V0Y1U0 after cropping the input 
data. 

Y U Y V Y U Y V Y U ...

VYUY

YVYU

UYVY

YUYV
 

Figure 26.4-3 Sensor Data Input Order 

 Input and Output Data Format 

Sensor could output YcbCr422, RGB565, Bayer format or JPEG bit-stream. However, Capture sensor 
interface only support YcbCr422 and RGB565. The input format depends on the sensor initial table. 
Programmer can specify the output format by INFMT(CAP_PAR[0])  

Output format depends on the display device or the input data of JPEG encoder. Programmer can 
specify the output format by OUTFMT(CAP_PAR[5:4]). 

 Downscale Factor 

Capture sensor interface controller supports to resize the input data by direct-drop algorithm (DDA). 

For example:  

If the dimension of cropping window is equal to 640x480 and target dimension is equal to 352x288. 

The horizontal downscale factor =  

352/640 =(PKTSHNH<<8+PKTSHNL)/(PKTSHMH<<8+PKTSHML) 



 NUC980 

May 2, 2019  Page 251 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

The vertical downscale factor =  

288/480 =(PKTSVNH<<8+PKTSVNL)/(PKTSVMH<<8+PKTSVML) 

 Cropping Window and Start Position 

The capture interface can select a window from the received image. The size of the window is 
specified by the number of pixel clocks (horizontal dimension) and the number of lines (vertical 
dimension). The start (left upper corner) coordinates can be specified by the CAP_CWSP register. 
The size (vertical dimension in number of lines and horizontal dimension in number of pixel clocks) 
can be specified by the CAP_CWS register. 

Image

CWADDRV(CAP_CWSP[26:16])

CWSADDRH(CAP_CWSP[11:0])

CWH(CAP_CWS[26:16])

CWW(CAP_CWSP[11:0])

 

Figure 26.4-4 Cropping Window Configuration 

 One Shutter Mode (Single Frame) 

In this mode, a single frame is captured. After the SHUTTER (CAP_CTL[16]) bit is set, the Image 
Capture interface automatically disables the capture interface after a frame is captured. 

 Motion detection 

Capture sensor interface controller supports in-door motion detection. The feature lists as follows 

1. Block size supports 8x8 and 16x16 

2. Output motion detection supports 1 bit or 8 bit(1 bit DIFF and 7 bit threshold) 

The following figure illustrates how motion detection block works. Motion detection block separates 
whole frame into 8x8 or 16x16 blocks. Get the central pixel (4,4) or (8,8) for block size 8x8 or 16x16. 
Then compare with previous frame for same position –MDYADDR (the temporary Y buffer of motion 
detection). If the difference is over the threshold set 1 to motion detection output buffer- MDADDR, 
otherwise set to be 0 to motion detection output buffer- MDADDR. Output the central pixel to the 
temporary Y buffer of motion detection. It will be padding 0 if the output stream is not enough one 
word. 

 



 NUC980 

May 2, 2019  Page 252 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

· 

 

Figure 26.4-5 Motion Detection 

The format of motion detection output buffer lists as following. 

 One bit mode (Captured Width = 640 for block size 16x16 ) 

b31 b30 b29 b28 b27 b26 b25 b24 XX b1 b0

0 b34 b33 b32b35b36b37b38

Low Word

High Word b39

 

Figure 26.4-6 One Bit Mode Motion Detection Output 

 1 bit DIFF(MSB) + 7 bit Y Differential (Captured Width = 352 for block size 16x16 ) 

B1 B0B2B3

B1 B0B2B3

B20B2100

XX

Low Word

High Word
 

Figure 26.4-7 Y Differentional Motion Detection Output 

  



 NUC980 

May 2, 2019  Page 253 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

26.5 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

Capture Base Address: 

CAPx_BA = 0xB002_4000 - ( 0x10000*x ) 

x=0, 1 

CAPx_CTL CAPx_BA+0x00 R/W Image Capture Interface Control Register 0x0000_0040 

CAPx_PAR CAPx_BA+0x04 R/W Image Capture Interface Parameter Register 0x0000_0000 

CAPx_INT CAPx_BA+0x08 R/W Image Capture Interface Interrupt Register 0x0000_0000 

CAPx_POSTERIZE CAPx_BA+0x0C R/W YUV Component Posterizing Factor Register 0x0000_0000 

CAPx_MD CAPx_BA+0x10 R/W Motion Detection Register 0x0000_0000 

CAPx_MDADDR CAPx_BA+0x14 R/W Motion Detection Output Address Register 0x0000_0000 

CAPx_MDYADDR CAPx_BA+0x18 R/W Motion Detection Temp Y Output Address Register 0x0000_0000 

CAPx_SEPIA CAPx_BA+0x1C R/W Sepia Effect Control Register 0x0000_0000 

CAPx_CWSP CAPx_BA+0x20 R/W Cropping Window Starting Address Register 0x0000_0000 

CAPx_CWS CAPx_BA+0x24 R/W Cropping Window Size Register 0x0000_0000 

CAPx_PKTSL CAPx_BA+0x28 R/W Packet Scaling Vertical/Horizontal Factor Register (LSB) 0x0000_0000 

CAPx_PLNSL CAPx_BA+0x2C R/W Planar Scaling Vertical/Horizontal Factor Register (LSB) 0x0000_0000 

CAPx_FRCTL CAPx_BA+0x30 R/W Scaling Frame Rate Factor Register 0x0000_0000 

CAPx_STRIDE CAPx_BA+0x34 R/W Frame Output Pixel Stride Width Register 0x0000_0000 

CAPx_FIFOTH CAPx_BA+0x3C R/W FIFO Threshold Register 0x070D_0507 

CAPx_CMPADDR CAPx_BA+0x40 R/W Compare Memory Base Address Register 0xFFFF_FFFC 

CAPx_PKTSM CAPx_BA+0x48 R/W 
Packet Scaling Vertical/Horizontal Factor Register 
(MSB) 

0x0000_0000 

CAPx_PLNSM CAPx_BA+0x4C R/W Planar Scaling Vertical/Horizontal Factor Register (MSB) 0x0000_0000 

CAPx_CURADDRP CAPx_BA+0x50 R Current Packet System Memory Address Register 0x0000_0000 

CAPx_CURADDRY CAPx_BA+0x54 R Current Planar Y System Memory Address Register 0x0000_0000 

CAPx_CURADDRU CAPx_BA+0x58 R Current Planar U System Memory Address Register 0x0000_0000 

CAPx_CURVADDR CAPx_BA+0x5C R Current Planar V System Memory Address Register 0x0000_0000 

CAPx_PKTBA0 CAPx_BA+0x60 R/W System Memory Packet Base Address 0 Register 0x0000_0000 

CAPx_PKTBA1 CAPx_BA+0x64 R/W System Memory Packet Base Address 1 Register 0x0000_0000 

CAPx_YBA CAPx_BA+0x80 R/W System Memory Planar Y Base Address Register 0x0000_0000 

CAPx_UBA CAPx_BA+0x84 R/W System Memory Planar U Base Address Register 0x0000_0000 

CAPx_VBA CAPx_BA+0x88 R/W System Memory Planar V Base Address Register 0x0000_0000 

  



 NUC980 

May 2, 2019  Page 254 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

27 ANALOG TO DIGITAL CONVERTER (ADC) 

27.1 Overview 

The NUC980 contains one 12-bit Successive Approximation Register analog-to-digital converter (SAR 
A/D converter) with 9 input channels. NUC980 ADC can convert the voltage of input channel to a 12-
bit digital conversion result. 

27.2 Features 

 Resolution: 12-bit resolution. 

 DNL: +/-1.5 LSB, INL: +/-3 LSB. 

 Data Rate: 200 KSPS. 

 Analog Input Range: VREF to AGND, could be rail-to-rail. 

 Analog Supply: 2.7-3.6V. 

 Digital Supply: 1.2V. 

 9 Single-Ended Analog inputs. 

27.3 Functional Description 

 Basic Configuration 

The ADC peripheral clock can be enabled in ADC (PCLKEN1[24]). The ADC engine clock source is 
selected by ADC_S (CLKDIV7[23:16]) and ADC engine clock divider is determined by ADC_N 
(CLKDIV7[31:24]). 

 ADC Transfer Function 

The ADC output coding is offset in binary, 1LSB=VREF/4096, the transfer characteristic is shown in 
the following graph: 



 NUC980 

May 2, 2019  Page 255 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

ADC_OUTADC_OUT

ANALOG INPUTANALOG INPUT

00 1
LSB

1
LSB

2
LSB

2
LSB

3
LSB

3
LSB

4
LSB

4
LSB

5
LSB

5
LSB

6
LSB

6
LSB

4
0

9
3

LSB
4

0
9

3
LSB

4
0

9
4

LSB
4

0
9

4
LSB

4
0

9
5

LSB
4

0
9

5
LSB

4
0

9
6

LSB
4

0
9

6
LSB

0000 0000 00010000 0000 0001

0000 0000 00100000 0000 0010

0000 0000 00110000 0000 0011

0000 0000 01000000 0000 0100

0000 0000 00000000 0000 0000

1111 1111 11001111 1111 1100

1111 1111 11011111 1111 1101

1111 1111 11101111 1111 1110

1111 1111 11111111 1111 1111

 

Figure 27.3-1 ADC Transfer Function 

 ADC Timing Diagram 

When A/D conversion for each enabled function is completed, the result is transferred to the A/D data 
register corresponding to each functional, by the way, setting ADC reference voltage stable counter 
REFCNT (ADC_CONF[19:16]) to add additional wait cycle (n), use sampling counter registers 
ADCSAMPCNT (ADC_CONF[31:24]) to add additional sample and hold cycle (n). 

 

SOC

EOC

0+n
clock

ADC_CLK

Data readyADC_DAT[11:0]

1+n
clock

2 
clock

13 
clock

ADF

Sampling
(ADCSAMPCNT)

Wait
(REFCNT)

Bit cycling

4 
clock

Conversion

 

Figure 27.3-2 ADC Timing Diagram 



 NUC980 

May 2, 2019  Page 256 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

Demonstrations of ADC timing configuration software program as follows: 

unsigned int refcnt, samplecnt; 

refcnt = 5; 

samplecnt = 10; 

rREG_CONF = (rREG_CONF & ~0xF0000) | (refcnt << 16); /* set REFCNT */ 

rREG_CONF = (rREG_CONF & ~0xFF000000) | (refcnt << 24); /* set SAMPLECNT */ 

 

 Normal Detection 

In normal mode, A/D conversion is performed only once on the specified single channel. 
Demonstration of a normal detection software program as follows. 

char c,num;  

unsigned int data,n; 

unsigned int d1,d2,val=0; 

rREG_CTL |= ADC_CTL_ADEN; 

printf("select channel 0~7:\n"); 

num=getchar(); 

switch(num) 

{ 

 case '0': val=0; break; 

 case '1': val=1; break; 

 case '2': val=2; break; 

 case '3': val=3; break; 

 case '4': val=4; break; 

 case '5': val=5; break; 

 case '6': val=6; break; 

 case '7': val=7; break;  

} 

rREG_CONF |= ADC_CONF_NACEN | val<<12 | (3<<6); 

rREG_ISR = ADC_ISR_MF | ADC_ISR_NACF; 

/* narmal_test interrupt mode */ 

rREG_IER |= ADC_IER_MIEN; 

do{ 

 complete = 0; 

 rREG_CTL |= ADC_CTL_MST; 

 UART_printf("Waiting for Normal mode Interrupt\n"); 

 while(!(rREG_ISR & ADC_ISR_MF)); 

 rREG_ISR = ADC_ISR_MF; //Clear MF flag 

 if(rREG_ISR & ADC_ISR_NACF) 

 { 

  data=rREG_DATA; 



 NUC980 

May 2, 2019  Page 257 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

  n=(33*data*100)>>12; 

  d1=n/1000; 

  d2=n%1000; 

  printf("DATA=0x%08x,voltage=%d.%dv\n",data,d1,d2); 

 } 

 else 

  UART_printf("interrupt error\n"); 

}while(1); 

  



 NUC980 

May 2, 2019  Page 258 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

27.4 Register Map 

R: read only, W: write only, R/W: both read and write. 

Register Offset R/W Description Reset Value 

ADC Base Address: 

ADC_BA = 0xB004_3000 

ADCON ADC_BA+0x00 R/W ADC Control  0x0000_0000 

ADC_CONF ADC_BA+0x04 R/W ADC Configure  0x0000_0000 

ADC_IER ADC_BA+0x08 R/W ADC Interrupt Enable Register 0x0000_0000 

ADC_ISR ADC_BA+0x0C R/W ADC Interrupt Status Register 0x0000_0000 

ADC_DATA ADC_BA+0x28 R ADC Normal Conversion Data  0x0000_0000 

 



 NUC980 

May 2, 2019  Page 259 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

28 REVISION HISTORY 

Date Revision Description 

2018.07.1 1.00 Initial version. 

2019.05.02 1.01 Editorial change. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 NUC980 

May 2, 2019  Page 260 of 260  Rev 1.01 

N
U

C
9
8

0
 P

R
O

G
R

A
M

M
IN

G
 G

U
ID

E
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Notice 

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any 
malfunction or failure of which may cause loss of human life, bodily injury or severe property 
damage. Such applications are deemed, “Insecure Usage”.  

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic 
energy control instruments, airplane or spaceship instruments, the control or operation of 
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all 
types of safety devices, and other applications intended to support or sustain life.   

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay 
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the 
damages and liabilities thus incurred by Nuvoton. 

 

 


	1 Overview
	2 System Manager
	2.1 Overview
	2.2 Functional Description
	2.2.1 Register Write-Protection Control
	2.2.2 Multiple Function Control
	2.2.3 System Reset
	2.2.4 Low Voltage Detect / Reset
	2.2.5 IP Reset
	2.2.6 Power Mode And Wake Up Source
	2.2.7 USB ID Detection

	2.3 Register Map

	3 Clock Controller
	3.1 Overview
	3.2 Features
	3.3 Block Diagram
	3.4 Functional Description
	3.4.1 Pre-Scalar Counter
	3.4.2 Module Clock On/Off
	3.4.3 Clock Divider
	3.4.4 PLL Setting

	3.5 Register Map

	4 Advanced Interrupt Controller (AIC)
	4.1 Overview
	4.2 Features
	4.3 Block Diagram
	4.4 Functional Description
	4.4.1 Interrupt channel configuration
	4.4.2 Interrupt Masking
	4.4.3 Interrupt Handling Operation Flow
	4.4.4 ENIT Usage
	4.4.5 Interrupt Source

	4.5 Register Map

	5 External Bus Interface (EBI)
	5.1 Overview
	5.2 Features
	5.3 Block Diagram
	5.4 Functional Description
	5.4.1 Basic Configuration
	5.4.2 Operation and Access Time Control

	5.5 Register Map

	6 General-Purpose Input/Output (GPIO)
	6.1 Overview
	6.2 Features
	6.3 Block Diagram
	6.4 Functional Description
	6.4.1 Multiple function pin Configuration
	6.4.1.1 Input Mode
	6.4.1.2 Push-pull Output Mode
	6.4.1.3 Open-drain Mode
	6.4.1.4 Quasi-bidirectional Mode
	6.4.1.5 Schmitt trigger mode
	6.4.1.6 Pull-up/Pull-down mode
	6.4.1.7 GPIO Digital Input Path Disable Control
	6.4.1.8 GPIO Interrupt and Wake-up Function


	6.5 Register Map

	7 Peripheral DMA Controller (PDMA)
	7.1 Overview
	7.2 Features
	7.3 Block Diagram
	7.4 Functional Description
	7.4.1 Descriptor Functional Descriptions
	7.4.1.1 Channel Priority
	7.4.1.2 PDMA Operation Mode
	7.4.1.3 Transfer Type
	7.4.1.4 Channel Time-out
	7.4.1.5 Stride Function


	7.5 Register Map

	8 Timer Controller (TMR)
	8.1 Overview
	8.2 Features
	8.3 Block Diagram
	8.4 Functional Description
	8.4.1 Timer Initialization
	8.4.2 Timer Capture Initialization
	8.4.3 INTERRUPT HANDLING
	8.4.4 TIEMR FREQUENCY
	8.4.5 ONE-SHOT MODE
	8.4.6 PERIODIC MODE
	8.4.7 TOGGLE MODE
	8.4.8 CONTINUOUS MODE
	8.4.9 Event Counting Mode
	8.4.10 FREE COUNTING MODE
	8.4.11 TRIGGER COUNTING MODE
	8.4.12 COUNTER RESET MODE
	8.4.13 CAPTURE DEBOUNCE
	8.4.14 Inter-Timer Trigger Mode

	8.5 Register Map

	9 Pulse Width Modulation (PWM)
	9.1 Overview
	9.2 Features
	9.3 Block Diagram
	9.4 Functional Description
	9.4.1 PWM Timer Operation
	9.4.2 PWM double buffer
	9.4.3 Periodic and One-Shot Operation
	9.4.4 Dead-Zone Generator
	9.4.5 PWM Timer Start Procedure
	9.4.6 PWM Timer Stop Procedure

	9.5 Register Map

	10 Watchdog Timer (WDT)
	10.1 Overview
	10.2 Features
	10.3 Block Diagram
	10.4 Functional Description
	10.4.1 WDT Configuration
	10.4.2 WDT Wakeup

	10.5 Register Map

	11 Window Watchdog Timer (WWDT)
	11.1 Overview
	11.2 Features
	11.3 Block Diagram
	11.4 Functional Description
	11.4.1 Timeout Setting
	11.4.2 WWDT Interrupt
	11.4.3 System Reset
	11.4.4 WWDT Window Setting Limitations

	11.5 Register Map

	12 Real Time Clock (RTC)
	12.1 Overview
	12.2 Features
	12.3 Block Diagram
	12.4 Functional Description
	12.4.1 RTC Initiation
	12.4.2 RTC write enable
	12.4.3 12/24 hour Time scale Selection
	12.4.4 Set Calendar and Time
	12.4.5 Set Calendar and Time Alarm (Absolute)
	12.4.6 Set Time Alarm (Relative)
	12.4.7 Set wake-up function
	12.4.8 Set tick interrupt
	12.4.9 Frequency Compensation

	12.5 Register Map

	13 UART
	13.1 Overview
	13.2 Features
	13.3 Block Diagram
	13.4 Functional Description
	13.4.1 Initializations
	13.4.2 IrDA Mode
	13.4.3 RS485 Function Mode
	13.4.3.1 RS-485 Normal Multidrop Operation Mode (NMM)
	13.4.3.2 RS-485 Auto Address Detection Operation Mode (AAD)
	13.4.3.3 RS-485 Auto Direction Mode (AUD)

	13.4.4 LIN (Local Interconnection Network) Mode
	13.4.5 PDMA Transfer Function
	13.4.6 UART Controller Wake-up Function

	13.5 Register Map

	14 Smart Card Host Interface (SC)
	14.1 Overview
	14.2 Features
	14.3 Block Diagram
	14.4 Functional Description
	14.4.1 Activation (Cold Reset)
	14.4.2 Warm Reset
	14.4.3 Deactivation
	14.4.4 Data Format
	14.4.5 Data Transfer
	14.4.6 Error Signal and Character Repetition
	14.4.7 Internal Time-out Counter
	14.4.8 Smartcard Insert/Remove Detection
	14.4.9 Miscellaneous Transmission Settings
	14.4.10 UART Mode

	14.5 Register Map

	15 I2C
	15.1 Overview
	15.2 Features
	15.3 Block Diagram
	15.4 Functional Description
	15.4.1 I2C Protocol
	15.4.2 Operation Modes
	15.4.3 Example for Random Read on EEPROM

	15.5 Register Map

	16 QSPI
	16.1 Overview
	16.2 Features
	16.3 Block Diagram
	16.4 Functional Description
	16.4.1 Slave Selection
	16.4.2 Automatic Slave Select
	16.4.3 Dual / Quad Mode
	16.4.4 QSPI Interrupt
	16.4.5 Slave mode
	16.4.6 PDMA Transfer function
	16.4.7 QSPI Programming Example

	16.5 Register Map

	17 SPI
	17.1 Overview
	17.2 Features
	17.3 Block Diagram
	17.4 Functional Description
	17.4.1 Slave Selection
	17.4.2 Automatic Slave Select
	17.4.3 SPI Interrupt
	17.4.4 Slave mode
	17.4.5 PDMA Transfer function
	17.4.6 SPI Programming Example

	17.5 Register Map

	18 I2S Controller (I2S)
	18.1 Overview
	18.2 Features
	18.3 Block Diagram
	18.4 Functional Description
	18.4.1 I2S Master/Slave Mode
	18.4.2 I2S Source Clock Configuration
	18.4.3 I2S Calculation and Configuration of Clock
	18.4.4 DMA
	18.4.5 Sequence of DMA Data
	18.4.6 Interface Selection
	18.4.7 PCM Interface
	18.4.8 Data Split

	18.5 Register Map

	19 Ethernet MAC Controller (EMAC)
	19.1 Overview
	19.2 Features
	19.3 Block Diagram
	19.4 Functional Description
	19.4.1 PHY Control
	19.4.2 CAM Configuration
	19.4.3 Control Frame
	19.4.4 Wake on Lan (WoL)
	19.4.5 Packet Receive
	19.4.6 Packet Transmit
	19.4.7 Network Timing
	19.4.8 Error Handling

	19.5 Register Map

	20 USB 2.0 Device Controller (USBD)
	20.1 Overview
	20.2 Features
	20.3 Block Diagram
	20.4 Functional Description
	20.4.1 Initialization
	20.4.2 Interrupt Service Routine
	20.4.3 Standard Request
	20.4.4 Set Address Request
	20.4.5 Get Descriptor
	20.4.6 IN Transmission
	20.4.7 OUT Transmission

	20.5 Register Map

	21 USB Host Controller
	21.1 Overview
	21.2 Features
	21.3 Block Diagram
	21.3.1 Basic Configuration
	21.3.2 USB Host Port 0
	21.3.3 EHCI Controller
	21.3.4 OHCI Controller
	21.3.4.1 AHB Interface
	21.3.4.2 AHB Master
	21.3.4.3 AHB Slave
	21.3.4.4 List Processor
	21.3.4.5 Frame Management
	21.3.4.6 Interrupt Processing
	21.3.4.7 Host Controller Bus Master
	21.3.4.8 Data Buffer
	21.3.4.9 USB Interface
	21.3.4.10 Series Interface Engine (SIE)
	21.3.4.11 Root Hub
	21.3.4.12 USB Lite


	21.4 Functional Description
	21.4.1 Initialization
	21.4.2 Root Hub Port Routing Logic
	21.4.3 OHCI
	21.4.3.1 Data Structure
	21.4.3.2 Endpoint Descriptor
	21.4.3.3 Transfer Descriptor
	21.4.3.4 Host Controller Communication Area
	21.4.3.5 OHCI Initialization
	21.4.3.6 Interrupt Processing
	21.4.3.7 Done Queue Processing
	21.4.3.8 Root Hub

	21.4.4 EHCI
	21.4.4.1 Data Structure
	21.4.4.2 Isochronous Transfer Descriptor (iTD)
	21.4.4.3 Split Transaction Isochronous Transfer Descriptor (siTD)
	21.4.4.4 Queue Element Transfer Descriptor (qTD)
	21.4.4.5 EHCI Initialization
	21.4.4.6 USB Commands
	21.4.4.7 Interrupt Processing
	21.4.4.8 Root Hub


	21.5 Register Map

	22 CAN
	22.1 Overview
	22.2 Features
	22.3 Block Diagram
	22.4 Functional Description
	22.4.1 CAN Protocol
	22.4.2 CAN Baud Rate Setting
	22.4.3 CAN Module Register
	22.4.4 Receive CAN Message
	22.4.5 Wakeup Function

	22.5 Register Map

	23 Flash Memory Interface (FMI)
	23.1 Overview
	23.2 Features
	23.3 Block Diagram
	23.4 Functional Description
	23.4.1 DMA and FMI Global Control
	23.4.2 NAND Flash
	23.4.2.1 NAND Initialize
	23.4.2.2 Reset NAND Flash
	23.4.2.3 Identify NAND Flash
	23.4.2.4 Erase NAND Flash
	23.4.2.5 Write NAND Flash
	23.4.2.6 Read NAND Flash
	23.4.2.7 NAND Flash ECC Correction

	23.4.3 SD/eMMC
	23.4.3.1 SD/eMMC Initialize
	23.4.3.2 Send Command
	23.4.3.3 Get Response
	23.4.3.4 Read SD/eMMC
	23.4.3.5 Write SD/eMMC


	23.5 Register Map

	24 Secure Digital Host Controller (SDH)
	24.1 Overview
	24.2 Features
	24.3 Block Diagram
	24.4 Functional Description
	24.4.1 Global Control
	24.4.2 Send Command
	24.4.3 Get Response
	24.4.4 Read SD Card
	24.4.5 Write SD Card

	24.5 Register Map

	25 Cryptographic Accelerator
	25.1 Overview
	25.2 Features
	25.3 Block Diagram
	25.3.1 Data Access

	25.4 Functional Description
	25.4.1 PRNG
	25.4.2 AES
	25.4.2.1 AES DMA Mode Operating Flow
	25.4.2.2 AES non-DMA Mode Operating Flow

	25.4.3 SHA
	25.4.3.1 SHA DMA Mode Operating Flow
	25.4.3.2 SHA non-DMA Mode Operating Flow

	25.4.4 ECC
	25.4.4.1 Using Prime Field Elliptic Curves
	25.4.4.2 Using Binary Field Elliptic Curves
	25.4.4.3 Point Multiplication
	25.4.4.4 Generate the Public Key
	25.4.4.5 Support ECC ECDH
	25.4.4.6 Support ECC ECDSA

	25.4.5 RSA
	25.4.5.1 Generate RSA Private Key and Public Key
	25.4.5.2 Montgomery domain constant
	25.4.5.3 RSA Encryption
	25.4.5.4 RSA Decryption


	25.5 Register Map

	26 Capture Sensor Interface Controller
	26.1 Overview
	26.2 Features
	26.3 Block Diagram
	26.4 Functional Description
	26.4.1 Basic Configuration
	26.4.2 Image Capture Flow Chart
	26.4.3 Polarity and Input Data Order
	26.4.4 Sensor Data Input Order
	26.4.5 Input and Output Data Format
	26.4.6 Downscale Factor
	26.4.7 Cropping Window and Start Position
	26.4.8 One Shutter Mode (Single Frame)
	26.4.9 Motion detection

	26.5 Register Map

	27 Analog to Digital Converter (ADC)
	27.1 Overview
	27.2 Features
	27.3 Functional Description
	27.3.1 Basic Configuration
	27.3.2 ADC Transfer Function
	27.3.3 ADC Timing Diagram
	27.3.4 Normal Detection

	27.4 Register Map

	28 REVISION HISTORY

